IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38438-0.html
   My bibliography  Save this article

In-plane and out-of-plane excitonic coupling in 2D molecular crystals

Author

Listed:
  • Dogyeong Kim

    (Pohang University of Science and Technology (POSTECH))

  • Sol Lee

    (Yonsei University
    Center for Nanomedicine, Institute for Basic Science (IBS))

  • Jiwon Park

    (Pohang University of Science and Technology (POSTECH))

  • Jinho Lee

    (Pohang University of Science and Technology (POSTECH))

  • Hee Cheul Choi

    (Pohang University of Science and Technology (POSTECH))

  • Kwanpyo Kim

    (Yonsei University
    Center for Nanomedicine, Institute for Basic Science (IBS))

  • Sunmin Ryu

    (Pohang University of Science and Technology (POSTECH))

Abstract

Understanding the nature of molecular excitons in low-dimensional molecular solids is of paramount importance in fundamental photophysics and various applications such as energy harvesting, switching electronics and display devices. Despite this, the spatial evolution of molecular excitons and their transition dipoles have not been captured in the precision of molecular length scales. Here we show in-plane and out-of-plane excitonic evolution in quasilayered two-dimensional (2D) perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) crystals assembly-grown on hexagonal boron nitride (hBN) crystals. Complete lattice constants with orientations of two herringbone-configured basis molecules are determined with polarization-resolved spectroscopy and electron diffraction methods. In the truly 2D limit of single layers, two Frenkel emissions Davydov-split by Kasha-type intralayer coupling exhibit energy inversion with decreasing temperature, which enhances excitonic coherence. As the thickness increases, the transition dipole moments of newly emerging charge transfer excitons are reoriented because of mixing with the Frenkel states. The current spatial anatomy of 2D molecular excitons will inspire a deeper understanding and groundbreaking applications of low-dimensional molecular systems.

Suggested Citation

  • Dogyeong Kim & Sol Lee & Jiwon Park & Jinho Lee & Hee Cheul Choi & Kwanpyo Kim & Sunmin Ryu, 2023. "In-plane and out-of-plane excitonic coupling in 2D molecular crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38438-0
    DOI: 10.1038/s41467-023-38438-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38438-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38438-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kwanghee Park & Haneul Kang & Seonghyun Koo & DaeEung Lee & Sunmin Ryu, 2019. "Redox-governed charge doping dictated by interfacial diffusion in two-dimensional materials," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Huijuan Zhao & Yingbo Zhao & Yinxuan Song & Ming Zhou & Wei Lv & Liu Tao & Yuzhang Feng & Biying Song & Yue Ma & Junqing Zhang & Jun Xiao & Ying Wang & Der-Hsien Lien & Matin Amani & Hyungjin Kim & Xi, 2019. "Strong optical response and light emission from a monolayer molecular crystal," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Archana Raja & Andrey Chaves & Jaeeun Yu & Ghidewon Arefe & Heather M. Hill & Albert F. Rigosi & Timothy C. Berkelbach & Philipp Nagler & Christian Schüller & Tobias Korn & Colin Nuckolls & James Hone, 2017. "Coulomb engineering of the bandgap and excitons in two-dimensional materials," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Zhang & Baichang Li & Xinzhong Chen & Francesco L. Ruta & Yinming Shao & Aaron J. Sternbach & A. S. McLeod & Zhiyuan Sun & Lin Xiong & S. L. Moore & Xinyi Xu & Wenjing Wu & Sara Shabani & Lin Zh, 2022. "Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Shun Feng & Aidan J. Campbell & Mauro Brotons-Gisbert & Daniel Andres-Penares & Hyeonjun Baek & Takashi Taniguchi & Kenji Watanabe & Bernhard Urbaszek & Iann C. Gerber & Brian D. Gerardot, 2024. "Highly tunable ground and excited state excitonic dipoles in multilayer 2H-MoSe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Shengcong Shang & Changsheng Du & Youxing Liu & Minghui Liu & Xinyu Wang & Wenqiang Gao & Ye Zou & Jichen Dong & Yunqi Liu & Jianyi Chen, 2022. "A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Erfu Liu & Jeremiah Baren & Zhengguang Lu & Takashi Taniguchi & Kenji Watanabe & Dmitry Smirnov & Yia-Chung Chang & Chun Hung Lui, 2021. "Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Yanhao Tang & Jie Gu & Song Liu & Kenji Watanabe & Takashi Taniguchi & James C. Hone & Kin Fai Mak & Jie Shan, 2022. "Dielectric catastrophe at the Wigner-Mott transition in a moiré superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38438-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.