IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38406-8.html
   My bibliography  Save this article

Hepatic stellate cell stearoyl co-A desaturase activates leukotriene B4 receptor 2 - β-catenin cascade to promote liver tumorigenesis

Author

Listed:
  • Sonal Sinha

    (Keck School of Medicine of the University of Southern California
    Keck School of Medicine of the University of Southern California)

  • Satoka Aizawa

    (Keck School of Medicine of the University of Southern California
    Keck School of Medicine of the University of Southern California)

  • Yasuhiro Nakano

    (The University of Tokyo)

  • Alexander Rialdi

    (Icahn School of Medicine at Mount Sinai Hess Center for Science and Medicine)

  • Hye Yeon Choi

    (Keck School of Medicine of the University of Southern California
    Keck School of Medicine of the University of Southern California)

  • Rajan Shrestha

    (Keck School of Medicine of the University of Southern California
    Keck School of Medicine of the University of Southern California)

  • Stephanie Q. Pan

    (Keck School of Medicine of the University of Southern California
    Keck School of Medicine of the University of Southern California)

  • Yibu Chen

    (USC Libraries Bioinformatics Services of the University of Southern California)

  • Meng Li

    (USC Libraries Bioinformatics Services of the University of Southern California)

  • Audrey Kapelanski-Lamoureux

    (Research Institute of the McGill University Health Centre)

  • Gregory Yochum

    (Pennsylvania State University)

  • Linda Sher

    (Keck School of Medicine of the University of Southern California)

  • Satdarshan Paul Monga

    (University of Pittsburg School of Medicine)

  • Anthoula Lazaris

    (Research Institute of the McGill University Health Centre)

  • Keigo Machida

    (Keck School of Medicine of the University of Southern California
    Keck School of Medicine of the University of Southern California)

  • Michael Karin

    (University of California San Diego)

  • Ernesto Guccione

    (Icahn School of Medicine at Mount Sinai Hess Center for Science and Medicine)

  • Hidekazu Tsukamoto

    (Keck School of Medicine of the University of Southern California
    Keck School of Medicine of the University of Southern California
    Department of Veterans Affairs Greater Los Angeles Healthcare System)

Abstract

Hepatocellular carcinoma (HCC) is the 3rd most deadly malignancy. Activated hepatic stellate cells (aHSC) give rise to cancer-associated fibroblasts in HCC and are considered a potential therapeutic target. Here we report that selective ablation of stearoyl CoA desaturase-2 (Scd2) in aHSC globally suppresses nuclear CTNNB1 and YAP1 in tumors and tumor microenvironment and prevents liver tumorigenesis in male mice. Tumor suppression is associated with reduced leukotriene B4 receptor 2 (LTB4R2) and its high affinity oxylipin ligand, 12-hydroxyheptadecatrienoic acid (12-HHTrE). Genetic or pharmacological inhibition of LTB4R2 recapitulates CTNNB1 and YAP1 inactivation and tumor suppression in culture and in vivo. Single cell RNA sequencing identifies a subset of tumor-associated aHSC expressing Cyp1b1 but no other 12-HHTrE biosynthetic genes. aHSC release 12-HHTrE in a manner dependent on SCD and CYP1B1 and their conditioned medium reproduces the LTB4R2-mediated tumor-promoting effects of 12-HHTrE in HCC cells. CYP1B1-expressing aHSC are detected in proximity of LTB4R2-positive HCC cells and the growth of patient HCC organoids is blunted by LTB4R2 antagonism or knockdown. Collectively, our findings suggest aHSC-initiated 12-HHTrE-LTB4R2-CTNNB1-YAP1 pathway as a potential HCC therapeutic target.

Suggested Citation

  • Sonal Sinha & Satoka Aizawa & Yasuhiro Nakano & Alexander Rialdi & Hye Yeon Choi & Rajan Shrestha & Stephanie Q. Pan & Yibu Chen & Meng Li & Audrey Kapelanski-Lamoureux & Gregory Yochum & Linda Sher &, 2023. "Hepatic stellate cell stearoyl co-A desaturase activates leukotriene B4 receptor 2 - β-catenin cascade to promote liver tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38406-8
    DOI: 10.1038/s41467-023-38406-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38406-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38406-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aveline Filliol & Yoshinobu Saito & Ajay Nair & Dianne H. Dapito & Le-Xing Yu & Aashreya Ravichandra & Sonakshi Bhattacharjee & Silvia Affo & Naoto Fujiwara & Hua Su & Qiuyan Sun & Thomas M. Savage & , 2022. "Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis," Nature, Nature, vol. 610(7931), pages 356-365, October.
    2. Ingmar Mederacke & Christine C. Hsu & Juliane S. Troeger & Peter Huebener & Xueru Mu & Dianne H. Dapito & Jean-Philippe Pradere & Robert F. Schwabe, 2013. "Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Bobowski-Gerard & Clémence Boulet & Francesco P. Zummo & Julie Dubois-Chevalier & Céline Gheeraert & Mohamed Bou Saleh & Jean-Marc Strub & Amaury Farce & Maheul Ploton & Loïc Guille & Jimmy Vand, 2022. "Functional genomics uncovers the transcription factor BNC2 as required for myofibroblastic activation in fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Ming Yang & Xiaoqiang Qi & Nan Li & Jussuf T. Kaifi & Shiyou Chen & Andrew A. Wheeler & Eric T. Kimchi & Aaron C. Ericsson & R. Scott Rector & Kevin F. Staveley-O’Carroll & Guangfu Li, 2023. "Western diet contributes to the pathogenesis of non-alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing production of 2-oleoylglycerol," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Haushabhau S. Pagire & Suvarna H. Pagire & Byung-kwan Jeong & Won-Il Choi & Chang Joo Oh & Chae Won Lim & Minhee Kim & Jihyeon Yoon & Seong Soon Kim & Myung Ae Bae & Jae-Han Jeon & Sungmin Song & Hee , 2024. "Discovery of a peripheral 5HT2A antagonist as a clinical candidate for metabolic dysfunction-associated steatohepatitis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Meirion Raymant & Yuliana Astuti & Laura Alvaro-Espinosa & Daniel Green & Valeria Quaranta & Gaia Bellomo & Mark Glenn & Vatshala Chandran-Gorner & Daniel H. Palmer & Christopher Halloran & Paula Ghan, 2024. "Macrophage-fibroblast JAK/STAT dependent crosstalk promotes liver metastatic outgrowth in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Christian Freise & Hyunho Lee & Christopher Chronowski & Doug Chan & Jessica Cziomer & Martin Rühl & Tarkan Dagdelen & Maik Lösekann & Ulrike Erben & Andre Catic & Werner Tegge & Detlef Schuppan & Raj, 2021. "Alpha-single chains of collagen type VI inhibit the fibrogenic effects of triple helical collagen VI in hepatic stellate cells," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    6. Lu Han & Yongxia Wu & Kun Fang & Sean Sweeney & Ulyss K. Roesner & Melodie Parrish & Khushbu Patel & Tom Walter & Julia Piermattei & Anthony Trimboli & Julia Lefler & Cynthia D. Timmers & Xue-Zhong Yu, 2023. "The splanchnic mesenchyme is the tissue of origin for pancreatic fibroblasts during homeostasis and tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Yuan Guan & Annika Enejder & Meiyue Wang & Zhuoqing Fang & Lu Cui & Shih-Yu Chen & Jingxiao Wang & Yalun Tan & Manhong Wu & Xinyu Chen & Patrik K. Johansson & Issra Osman & Koshi Kunimoto & Pierre Rus, 2021. "A human multi-lineage hepatic organoid model for liver fibrosis," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38406-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.