IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38228-8.html
   My bibliography  Save this article

Direct nucleophilic and electrophilic activation of alcohols using a unified boron-based organocatalyst scaffold

Author

Listed:
  • Jason P. G. Rygus

    (University of Alberta)

  • Dennis G. Hall

    (University of Alberta)

Abstract

Organocatalytic strategies for the direct activation of hydroxy-containing compounds have paled in comparison to those applicable to carbonyl compounds. To this end, boronic acids have emerged as valuable catalysts for the functionalization of hydroxy groups in a mild and selective fashion. Distinct modes of activation in boronic acid-catalyzed transformations are often accomplished by vastly different catalytic species, complicating the design of broadly applicable catalyst classes. Herein, we report the use of benzoxazaborine as a general scaffold for the development of structurally related yet mechanistically divergent catalysts for the direct nucleophilic and electrophilic activation of alcohols under ambient conditions. The utility of these catalysts is demonstrated in the monophosphorylation of vicinal diols and the reductive deoxygenation of benzylic alcohols and ketones respectively. Mechanistic studies of both processes reveal the contrasting nature of key tetravalent boron intermediates in the two catalytic manifolds.

Suggested Citation

  • Jason P. G. Rygus & Dennis G. Hall, 2023. "Direct nucleophilic and electrophilic activation of alcohols using a unified boron-based organocatalyst scaffold," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38228-8
    DOI: 10.1038/s41467-023-38228-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38228-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38228-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38228-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.