Reduced hepatic bradykinin degradation accounts for cold-induced BAT thermogenesis and WAT browning in male mice
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-38141-0
Download full text from publisher
References listed on IDEAS
- Mengle Shao & Bo Shan & Yang Liu & Yiping Deng & Cheng Yan & Ying Wu & Ting Mao & Yifu Qiu & Yubo Zhou & Shan Jiang & Weiping Jia & Jingya Li & Jia Li & Liangyou Rui & Liu Yang & Yong Liu, 2014. "Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s–PPARα axis signalling," Nature Communications, Nature, vol. 5(1), pages 1-12, May.
- Marion Peyrou & Rubén Cereijo & Tania Quesada-López & Laura Campderrós & Aleix Gavaldà-Navarro & Laura Liñares-Pose & Elena Kaschina & Thomas Unger & Miguel López & Marta Giralt & Francesc Villarroya, 2020. "The kallikrein–kinin pathway as a mechanism for auto-control of brown adipose tissue activity," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaoxue Jiang & Kan liu & Peixiang Luo & Zi Li & Fei Xiao & Haizhou Jiang & Shangming Wu & Min Tang & Feixiang Yuan & Xiaoying Li & Yousheng Shu & Bo Peng & Shanghai Chen & Shihong Ni & Feifan Guo, 2024. "Hypothalamic SLC7A14 accounts for aging-reduced lipolysis in white adipose tissue of male mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jing Yan & Yuemei Zhang & Hairong Yu & Yicen Zong & Daixi Wang & Jiangfei Zheng & Li Jin & Xiangtian Yu & Caizhi Liu & Yi Zhang & Feng Jiang & Rong Zhang & Xiangnan Fang & Ting Xu & Mingyu Li & Jianzh, 2022. "GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
- Elisa Duregotti & Christina M. Reumiller & Ursula Mayr & Maria Hasman & Lukas E. Schmidt & Sean A. Burnap & Konstantinos Theofilatos & Javier Barallobre-Barreiro & Arne Beran & Maria Grandoch & Alessa, 2022. "Reduced secretion of neuronal growth regulator 1 contributes to impaired adipose-neuronal crosstalk in obesity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Aitor Almanza & Katarzyna Mnich & Arnaud Blomme & Claire M. Robinson & Giovanny Rodriguez-Blanco & Sylwia Kierszniowska & Eoghan P. McGrath & Matthieu Gallo & Eleftherios Pilalis & Johannes V. Swinnen, 2022. "Regulated IRE1α-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38141-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.