IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38114-3.html
   My bibliography  Save this article

Regulation of molecular transport in polymer membranes with voltage-controlled pore size at the angstrom scale

Author

Listed:
  • Yuzhang Zhu

    (Chinese Academy of Sciences)

  • Liangliang Gui

    (Chinese Academy of Sciences)

  • Ruoyu Wang

    (Vanderbilt University)

  • Yunfeng Wang

    (Chinese Academy of Sciences)

  • Wangxi Fang

    (Chinese Academy of Sciences)

  • Menachem Elimelech

    (Yale University)

  • Shihong Lin

    (Vanderbilt University
    Vanderbilt University)

  • Jian Jin

    (Chinese Academy of Sciences
    Soochow University)

Abstract

Polymer membranes have been used extensively for Angstrom-scale separation of solutes and molecules. However, the pore size of most polymer membranes has been considered an intrinsic membrane property that cannot be adjusted in operation by applied stimuli. In this work, we show that the pore size of an electrically conductive polyamide membrane can be modulated by an applied voltage in the presence of electrolyte via a mechanism called electrically induced osmotic swelling. Under applied voltage, the highly charged polyamide layer concentrates counter ions in the polymer network via Donnan equilibrium and creates a sizeable osmotic pressure to enlarge the free volume and the effective pore size. The relation between membrane potential and pore size can be quantitatively described using the extended Flory-Rehner theory with Donnan equilibrium. The ability to regulate pore size via applied voltage enables operando modulation of precise molecular separation in-situ. This study demonstrates the amazing capability of electro-regulation of membrane pore size at the Angstrom scale and unveils an important but previously overlooked mechanism of membrane-water-solute interactions.

Suggested Citation

  • Yuzhang Zhu & Liangliang Gui & Ruoyu Wang & Yunfeng Wang & Wangxi Fang & Menachem Elimelech & Shihong Lin & Jian Jin, 2023. "Regulation of molecular transport in polymer membranes with voltage-controlled pore size at the angstrom scale," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38114-3
    DOI: 10.1038/s41467-023-38114-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38114-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38114-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38114-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.