IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38036-0.html
   My bibliography  Save this article

Geometric fluctuation of conformal Hilbert spaces and multiple graviton modes in fractional quantum Hall effect

Author

Listed:
  • Wang Yuzhu

    (Nanyang Technological University)

  • Yang Bo

    (Nanyang Technological University
    Institute of High Performance Computing, A*STAR)

Abstract

Neutral excitations in fractional quantum Hall (FQH) fluids define the incompressibility of topological phases, a species of which can show graviton-like behaviors and are thus called the graviton modes (GMs). Here, we develop the microscopic theory for multiple GMs in FQH fluids and show explicitly that they are associated with the geometric fluctuation of well-defined conformal Hilbert spaces (CHSs), which are hierarchical subspaces within a single Landau level, each with emergent conformal symmetry and continuously parameterized by a unimodular metric. This leads to several statements about the number and the merging/splitting of GMs, which are verified numerically with both model and realistic interactions. We also discuss how the microscopic theory can serve as the basis for the additional Haldane modes in the effective field theory description and their experimental relevance to realistic electron-electron interactions.

Suggested Citation

  • Wang Yuzhu & Yang Bo, 2023. "Geometric fluctuation of conformal Hilbert spaces and multiple graviton modes in fractional quantum Hall effect," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38036-0
    DOI: 10.1038/s41467-023-38036-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38036-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38036-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38036-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.