IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37977-w.html
   My bibliography  Save this article

Atomic-scale observation of premelting at 2D lattice defects inside oxide crystals

Author

Listed:
  • Hye-Sung Kim

    (Korea Advanced Institute of Science and Technology
    Korea Institute of Energy Research)

  • Ji-Sang An

    (Korea Advanced Institute of Science and Technology)

  • Hyung Bin Bae

    (Korea Advanced Institute of Science and Technology)

  • Sung-Yoon Chung

    (Korea Advanced Institute of Science and Technology)

Abstract

Since two major criteria for melting were proposed by Lindemann and Born in the early 1900s, many simulations and observations have been carried out to elucidate the premelting phenomena largely at the crystal surfaces and grain boundaries below the bulk melting point. Although dislocations and clusters of vacancies and interstitials were predicted as possible origins to trigger the melting, experimental direct observations demonstrating the correlation of premelting with lattice defects inside a crystal remain elusive. Using atomic-column-resolved imaging with scanning transmission electron microscopy in polycrystalline BaCeO3, here we clarify the initiation of melting at two-dimensional faults inside the crystals below the melting temperature. In particular, melting in a layer-by-layer manner rather than random nucleation at the early stage was identified as a notable finding. Emphasizing the value of direct atomistic observation, our study suggests that lattice defects inside crystals should not be overlooked as preferential nucleation sites for phase transformation including melting.

Suggested Citation

  • Hye-Sung Kim & Ji-Sang An & Hyung Bin Bae & Sung-Yoon Chung, 2023. "Atomic-scale observation of premelting at 2D lattice defects inside oxide crystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37977-w
    DOI: 10.1038/s41467-023-37977-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37977-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37977-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hye-In Yoon & Dong-Kyu Lee & Hyung Bin Bae & Gi-Young Jo & Hee-Suk Chung & Jin-Gyu Kim & Suk-Joong L. Kang & Sung-Yoon Chung, 2017. "Probing dopant segregation in distinct cation sites at perovskite oxide polycrystal interfaces," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    2. Yingxuan Li & Ling Zang & Daniel L. Jacobs & Jie Zhao & Xiu Yue & Chuanyi Wang, 2017. "In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. Youngjae Hong & Pilgyu Byeon & Jumi Bak & Yoon Heo & Hye-Sung Kim & Hyung Bin Bae & Sung-Yoon Chung, 2021. "Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden–Popper phases," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Robert W. Cahn, 2001. "Melting from within," Nature, Nature, vol. 413(6856), pages 582-583, October.
    5. Li Zhong & Jiangwei Wang & Hongwei Sheng & Ze Zhang & Scott X. Mao, 2014. "Formation of monatomic metallic glasses through ultrafast liquid quenching," Nature, Nature, vol. 512(7513), pages 177-180, August.
    6. Zhongchang Wang & Masaki Okude & Mitsuhiro Saito & Susumu Tsukimoto & Akira Ohtomo & Masaru Tsukada & Masashi Kawasaki & Yuichi Ikuhara, 2010. "Dimensionality-driven insulator–metal transition in A-site excess non-stoichiometric perovskites," Nature Communications, Nature, vol. 1(1), pages 1-7, December.
    7. Qikai Guo & Saeedeh Farokhipoor & César Magén & Francisco Rivadulla & Beatriz Noheda, 2020. "Tunable resistivity exponents in the metallic phase of epitaxial nickelates," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Hongyuan Li & Shaowei Li & Emma C. Regan & Danqing Wang & Wenyu Zhao & Salman Kahn & Kentaro Yumigeta & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Alex Zettl & Michael F. Crom, 2021. "Imaging two-dimensional generalized Wigner crystals," Nature, Nature, vol. 597(7878), pages 650-654, September.
    9. Pilgyu Byeon & Youngjae Hong & Hyung Bin Bae & Jaeho Shin & Jang Wook Choi & Sung-Yoon Chung, 2021. "Atomic-scale unveiling of multiphase evolution during hydrated Zn-ion insertion in vanadium oxide," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Bo Li & Feng Wang & Di Zhou & Yi Peng & Ran Ni & Yilong Han, 2016. "Modes of surface premelting in colloidal crystals composed of attractive particles," Nature, Nature, vol. 531(7595), pages 485-488, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Xing Li & Qi Zhu & Youran Hong & He Zheng & Jian Wang & Jiangwei Wang & Ze Zhang, 2022. "Revealing the pulse-induced electroplasticity by decoupling electron wind force," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Li Zhong & Yin Zhang & Xiang Wang & Ting Zhu & Scott X. Mao, 2024. "Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Si-yu Li & Zhengwen Wang & Yucheng Xue & Yingbo Wang & Shihao Zhang & Jianpeng Liu & Zheng Zhu & Kenji Watanabe & Takashi Taniguchi & Hong-jun Gao & Yuhang Jiang & Jinhai Mao, 2022. "Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Li Tian & Clemens Bechinger, 2022. "Surface melting of a colloidal glass," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    7. Toledo-Marín, J. Quetzalcóatl & Castillo, Isaac Pérez & Naumis, Gerardo G., 2016. "Minimal cooling speed for glass transition in a simple solvable energy landscape model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 227-236.
    8. Zhujun Zhang & Takashi Tsuchimochi & Toshiaki Ina & Yoshitaka Kumabe & Shunsuke Muto & Koji Ohara & Hiroki Yamada & Seiichiro L. Ten-no & Takashi Tachikawa, 2022. "Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Sebastian A. Kube & Sungwoo Sohn & Rodrigo Ojeda-Mota & Theo Evers & William Polsky & Naijia Liu & Kevin Ryan & Sean Rinehart & Yong Sun & Jan Schroers, 2022. "Compositional dependence of the fragility in metallic glass forming liquids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Xiuming Xiao & Lilin Wang & Zhijun Wang & Ziren Wang, 2022. "Superheating of grain boundaries within bulk colloidal crystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Qianhong Yang & Maoqiang Jiang & Francesco Picano & Lailai Zhu, 2024. "Shaping active matter from crystalline solids to active turbulence," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Yuan-Chao Hu & Hajime Tanaka, 2022. "Revealing the role of liquid preordering in crystallisation of supercooled liquids," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Madeline Winkle & Isaac M. Craig & Stephen Carr & Medha Dandu & Karen C. Bustillo & Jim Ciston & Colin Ophus & Takashi Taniguchi & Kenji Watanabe & Archana Raja & Sinéad M. Griffin & D. Kwabena Bediak, 2023. "Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Yi-Tao Sun & Rui Zhao & Da-Wei Ding & Yan-Hui Liu & Hai-Yang Bai & Mao-Zhi Li & Wei-Hua Wang, 2023. "Distinct relaxation mechanism at room temperature in metallic glass," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Dorri Halbertal & Simon Turkel & Christopher J. Ciccarino & Jonas B. Profe & Nathan Finney & Valerie Hsieh & Kenji Watanabe & Takashi Taniguchi & James Hone & Cory Dean & Prineha Narang & Abhay N. Pas, 2022. "Unconventional non-local relaxation dynamics in a twisted trilayer graphene moiré superlattice," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37977-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.