Vibrio cholerae biofilms use modular adhesins with glycan-targeting and nonspecific surface binding domains for colonization
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-37660-0
Download full text from publisher
References listed on IDEAS
- Thomas J. Kirn & Brooke A. Jude & Ronald K. Taylor, 2005. "A colonization factor links Vibrio cholerae environmental survival and human infection," Nature, Nature, vol. 438(7069), pages 863-866, December.
- Kyle A. Floyd & Calvin K. Lee & Wujing Xian & Mahmoud Nametalla & Aneesa Valentine & Benjamin Crair & Shiwei Zhu & Hannah Q. Hughes & Jennifer L. Chlebek & Daniel C. Wu & Jin Hwan Park & Ali M. Farhat, 2020. "c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gareth J Williams & Greta S Aeby & Rebecca O M Cowie & Simon K Davy, 2010. "Predictive Modeling of Coral Disease Distribution within a Reef System," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
- Xia Li & Wenfang Yin & Junjie Desmond Lin & Yong Zhang & Quan Guo & Gerun Wang & Xiayu Chen & Binbin Cui & Mingfang Wang & Min Chen & Peng Li & Ya-Wen He & Wei Qian & Haibin Luo & Lian-Hui Zhang & Xue, 2023. "Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2′,3′-cyclic guanosine monophosphate," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Cong Liu & Di Sun & Jiawen Liu & Ying Chen & Xuge Zhou & Yunrui Ru & Jingrong Zhu & Weijie Liu, 2022. "cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- María Pérez-Burgos & Marco Herfurth & Andreas Kaczmarczyk & Andrea Harms & Katrin Huber & Urs Jenal & Timo Glatter & Lotte Søgaard-Andersen, 2024. "A deterministic, c-di-GMP-dependent program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37660-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.