IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37465-1.html
   My bibliography  Save this article

GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy

Author

Listed:
  • Lisa N. Kasiewicz

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Souvik Biswas

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Aaron Beach

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Huilan Ren

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Chaitali Dutta

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Anne Marie Mazzola

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Ellen Rohde

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Alexandra Chadwick

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Christopher Cheng

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Sara P. Garcia

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Sowmya Iyer

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Yuri Matsumoto

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Amit V. Khera

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Kiran Musunuru

    (Perelman School of Medicine at the University of Pennsylvania)

  • Sekar Kathiresan

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Padma Malyala

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Kallanthottathil G. Rajeev

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

  • Andrew M. Bellinger

    (Verve Therapeutics, 201 Brookline Avenue, Suite 601)

Abstract

Lipid nanoparticles have demonstrated utility in hepatic delivery of a range of therapeutic modalities and typically deliver their cargo via low-density lipoprotein receptor-mediated endocytosis. For patients lacking sufficient low-density lipoprotein receptor activity, such as those with homozygous familial hypercholesterolemia, an alternate strategy is needed. Here we show the use of structure-guided rational design in a series of mouse and non-human primate studies to optimize a GalNAc-Lipid nanoparticle that allows for low-density lipoprotein receptor independent delivery. In low-density lipoprotein receptor-deficient non-human primates administered a CRISPR base editing therapy targeting the ANGPTL3 gene, the introduction of an optimized GalNAc-based asialoglycoprotein receptor ligand to the nanoparticle surface increased liver editing from 5% to 61% with minimal editing in nontargeted tissues. Similar editing was noted in wild-type monkeys, with durable blood ANGPTL3 protein reduction up to 89% six months post dosing. These results suggest that GalNAc-Lipid nanoparticles may effectively deliver to both patients with intact low-density lipoprotein receptor activity as well as those afflicted by homozygous familial hypercholesterolemia.

Suggested Citation

  • Lisa N. Kasiewicz & Souvik Biswas & Aaron Beach & Huilan Ren & Chaitali Dutta & Anne Marie Mazzola & Ellen Rohde & Alexandra Chadwick & Christopher Cheng & Sara P. Garcia & Sowmya Iyer & Yuri Matsumot, 2023. "GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37465-1
    DOI: 10.1038/s41467-023-37465-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37465-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37465-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kiran Musunuru & Alexandra C. Chadwick & Taiji Mizoguchi & Sara P. Garcia & Jamie E. DeNizio & Caroline W. Reiss & Kui Wang & Sowmya Iyer & Chaitali Dutta & Victoria Clendaniel & Michael Amaonye & Aar, 2021. "In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates," Nature, Nature, vol. 593(7859), pages 429-434, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique L. Brooks & Manuel J. Carrasco & Ping Qu & William H. Peranteau & Rebecca C. Ahrens-Nicklas & Kiran Musunuru & Mohamad-Gabriel Alameh & Xiao Wang, 2023. "Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guiquan Zhang & Yao Liu & Shisheng Huang & Shiyuan Qu & Daolin Cheng & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Xingxu Huang & Jianghuai Liu, 2022. "Enhancement of prime editing via xrRNA motif-joined pegRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Yue Xu & Shihao Ma & Haotian Cui & Jingan Chen & Shufen Xu & Fanglin Gong & Alex Golubovic & Muye Zhou & Kevin Chang Wang & Andrew Varley & Rick Xing Ze Lu & Bo Wang & Bowen Li, 2024. "AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Hongzhi Zeng & Qichen Yuan & Fei Peng & Dacheng Ma & Ananya Lingineni & Kelly Chee & Peretz Gilberd & Emmanuel C. Osikpa & Zheng Sun & Xue Gao, 2023. "A split and inducible adenine base editor for precise in vivo base editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Elliot H. Choi & Susie Suh & Andrzej T. Foik & Henri Leinonen & Gregory A. Newby & Xin D. Gao & Samagya Banskota & Thanh Hoang & Samuel W. Du & Zhiqian Dong & Aditya Raguram & Sajeev Kohli & Seth Blac, 2022. "In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Zhenxing Yu & Zhike Lu & Jingjing Li & Yingying Wang & Panfeng Wu & Yini Li & Yangfan Zhou & Bailun Li & Heng Zhang & Yingzheng Liu & Lijia Ma, 2022. "PEAC-seq adopts Prime Editor to detect CRISPR off-target and DNA translocation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Dominique L. Brooks & Manuel J. Carrasco & Ping Qu & William H. Peranteau & Rebecca C. Ahrens-Nicklas & Kiran Musunuru & Mohamad-Gabriel Alameh & Xiao Wang, 2023. "Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37465-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.