IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37424-w.html
   My bibliography  Save this article

Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells

Author

Listed:
  • Akimichi Inaba

    (University of Cambridge Department of Medicine)

  • Zewen Kelvin Tuong

    (University of Cambridge Department of Medicine
    Wellcome Sanger Institute)

  • Tian X. Zhao

    (Division of Cardiovascular Medicine, University of Cambridge)

  • Andrew P. Stewart

    (University of Cambridge Department of Medicine)

  • Rebeccah Mathews

    (University of Cambridge Department of Medicine)

  • Lucy Truman

    (West Suffolk Hospital)

  • Rouchelle Sriranjan

    (University of Cambridge)

  • Jane Kennet

    (University of Cambridge)

  • Kourosh Saeb-Parsy

    (University of Cambridge
    National Institute for Health Research Cambridge Biomedical Research Centre)

  • Linda Wicker

    (University of Oxford)

  • Frank Waldron-Lynch

    (Novartis Institutes for BioMedical Research, Autoimmunity Transplantation Inflammation)

  • Joseph Cheriyan

    (University of Cambridge)

  • John A. Todd

    (University of Oxford)

  • Ziad Mallat

    (Division of Cardiovascular Medicine, University of Cambridge
    Universite de Paris and INSERM)

  • Menna R. Clatworthy

    (University of Cambridge Department of Medicine
    Wellcome Sanger Institute)

Abstract

Dysfunction of interleukin-10 producing regulatory B cells has been associated with the pathogenesis of autoimmune diseases, but whether regulatory B cells can be therapeutically induced in humans is currently unknown. Here we demonstrate that a subset of activated B cells expresses CD25, and the addition of low-dose recombinant IL-2 to in vitro stimulated peripheral blood and splenic human B cells augments IL-10 secretion. Administration of low dose IL-2, aldesleukin, to patients increases IL-10-producing B cells. Single-cell RNA sequencing of circulating immune cells isolated from low dose IL2-treated patients reveals an increase in plasmablast and plasma cell populations that are enriched for a regulatory B cell gene signature. The transcriptional repressor BACH2 is significantly down-regulated in plasma cells from IL-2-treated patients, BACH2 binds to the IL-10 gene promoter, and Bach2 depletion or genetic deficiency increases B cell IL-10, implicating BACH2 suppression as an important mechanism by which IL-2 may promote an immunoregulatory phenotype in B cells.

Suggested Citation

  • Akimichi Inaba & Zewen Kelvin Tuong & Tian X. Zhao & Andrew P. Stewart & Rebeccah Mathews & Lucy Truman & Rouchelle Sriranjan & Jane Kennet & Kourosh Saeb-Parsy & Linda Wicker & Frank Waldron-Lynch & , 2023. "Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37424-w
    DOI: 10.1038/s41467-023-37424-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37424-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37424-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dorin-Mirel Popescu & Rachel A. Botting & Emily Stephenson & Kile Green & Simone Webb & Laura Jardine & Emily F. Calderbank & Krzysztof Polanski & Issac Goh & Mirjana Efremova & Meghan Acres & Daniel , 2019. "Decoding human fetal liver haematopoiesis," Nature, Nature, vol. 574(7778), pages 365-371, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Qi Chen & Hyun-Woo Jeong & Bong Ihn Koh & Emma C. Watson & Cong Xu & Martin Stehling & Bin Zhou & Ralf H. Adams, 2022. "A specialized bone marrow microenvironment for fetal haematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Ondrej Suchanek & John R. Ferdinand & Zewen K. Tuong & Sathi Wijeyesinghe & Anita Chandra & Ann-Katrin Clauder & Larissa N. Almeida & Simon Clare & Katherine Harcourt & Christopher J. Ward & Rachael B, 2023. "Tissue-resident B cells orchestrate macrophage polarisation and function," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Kim Vanuytsel & Carlos Villacorta-Martin & Jonathan Lindstrom-Vautrin & Zhe Wang & Wilfredo F. Garcia-Beltran & Vladimir Vrbanac & Dylan Parsons & Evan C. Lam & Taylor M. Matte & Todd W. Dowrey & Sara, 2022. "Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Yuan Liao & Lifeng Ma & Qile Guo & Weigao E & Xing Fang & Lei Yang & Fanwei Ruan & Jingjing Wang & Peijing Zhang & Zhongyi Sun & Haide Chen & Zhongliang Lin & Xueyi Wang & Xinru Wang & Huiyu Sun & Xiu, 2022. "Cell landscape of larval and adult Xenopus laevis at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Clara Alsinet & Maria Nascimento Primo & Valentina Lorenzi & Erica Bello & Iva Kelava & Carla P. Jones & Roser Vilarrasa-Blasi & Carmen Sancho-Serra & Andrew J. Knights & Jong-Eun Park & Beata S. Wysp, 2022. "Robust temporal map of human in vitro myelopoiesis using single-cell genomics," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Jake R. Thomas & Anna Appios & Emily F. Calderbank & Nagisa Yoshida & Xiaohui Zhao & Russell S. Hamilton & Ashley Moffett & Andrew Sharkey & Elisa Laurenti & Courtney W. Hanna & Naomi McGovern, 2023. "Primitive haematopoiesis in the human placenta gives rise to macrophages with epigenetically silenced HLA-DR," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Mingze Gao & Chen Qiao & Yuanhua Huang, 2022. "UniTVelo: temporally unified RNA velocity reinforces single-cell trajectory inference," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Delilah Hendriks & Benedetta Artegiani & Thanasis Margaritis & Iris Zoutendijk & Susana Chuva de Sousa Lopes & Hans Clevers, 2024. "Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Hanbing Song & Simon Bucher & Katherine Rosenberg & Margaret Tsui & Deviana Burhan & Daniel Hoffman & Soo-Jin Cho & Arun Rangaswami & Marcus Breese & Stanley Leung & MarĂ­a V. Pons Ventura & E. Alejand, 2022. "Single-cell analysis of hepatoblastoma identifies tumor signatures that predict chemotherapy susceptibility using patient-specific tumor spheroids," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Joyce B. Kang & Aparna Nathan & Kathryn Weinand & Fan Zhang & Nghia Millard & Laurie Rumker & D. Branch Moody & Ilya Korsunsky & Soumya Raychaudhuri, 2021. "Efficient and precise single-cell reference atlas mapping with Symphony," Nature Communications, Nature, vol. 12(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37424-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.