IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37216-2.html
   My bibliography  Save this article

Synthetic lethality of drug-induced polyploidy and BCL-2 inhibition in lymphoma

Author

Listed:
  • Ana Portelinha

    (Memorial Sloan-Kettering Cancer Center
    Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center)

  • Mariana Silva Ferreira

    (Memorial Sloan-Kettering Cancer Center)

  • Tatiana Erazo

    (Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center)

  • Man Jiang

    (Memorial Sloan-Kettering Cancer Center)

  • Zahra Asgari

    (Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center)

  • Elisa Stanchina

    (Memorial Sloan Kettering Cancer Center)

  • Anas Younes

    (Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center
    AstraZeneca)

  • Hans-Guido Wendel

    (Memorial Sloan-Kettering Cancer Center)

Abstract

Spontaneous whole genome duplication and the adaptive mutations that disrupt genome integrity checkpoints are infrequent events in B cell lymphomas. This suggests that lymphomas might be vulnerable to therapeutics that acutely trigger genomic instability and polyploidy. Here, we report a therapeutic combination of inhibitors of the Polo-like kinase 4 and BCL-2 that trigger genomic instability and cell death in aggressive lymphomas. The synthetic lethality is selective for tumor cells and spares vital organs. Mechanistically, inhibitors of Polo-like kinase 4 impair centrosome duplication and cause genomic instability. The elimination of polyploid cells largely depends on the pro-apoptotic BAX protein. Consequently, the combination of drugs that induce polyploidy with the BCL-2 inhibitor Venetoclax is highly synergistic and safe against xenograft and PDX models. We show that B cell lymphomas are ill-equipped for acute, therapy-induced polyploidy and that BCL-2 inhibition further enhances the removal of polyploid lymphoma cells.

Suggested Citation

  • Ana Portelinha & Mariana Silva Ferreira & Tatiana Erazo & Man Jiang & Zahra Asgari & Elisa Stanchina & Anas Younes & Hans-Guido Wendel, 2023. "Synthetic lethality of drug-induced polyploidy and BCL-2 inhibition in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37216-2
    DOI: 10.1038/s41467-023-37216-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37216-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37216-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan J. Quinton & Amanda DiDomizio & Marc A. Vittoria & Kristýna Kotýnková & Carlos J. Ticas & Sheena Patel & Yusuke Koga & Jasmine Vakhshoorzadeh & Nicole Hermance & Taruho S. Kuroda & Neha Parulekar, 2021. "Whole-genome doubling confers unique genetic vulnerabilities on tumour cells," Nature, Nature, vol. 590(7846), pages 492-497, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc A. Vittoria & Nathan Kingston & Kristyna Kotynkova & Eric Xia & Rui Hong & Lee Huang & Shayna McDonald & Andrew Tilston-Lunel & Revati Darp & Joshua D. Campbell & Deborah Lang & Xiaowei Xu & Crai, 2022. "Inactivation of the Hippo tumor suppressor pathway promotes melanoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Revati Darp & Marc A. Vittoria & Neil J. Ganem & Craig J. Ceol, 2022. "Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Chunyang Bao & Richard W. Tourdot & Gregory J. Brunette & Chip Stewart & Lili Sun & Hideo Baba & Masayuki Watanabe & Agoston T. Agoston & Kunal Jajoo & Jon M. Davison & Katie S. Nason & Gad Getz & Ken, 2023. "Genomic signatures of past and present chromosomal instability in Barrett’s esophagus and early esophageal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Nikki L. Burdett & Madelynne O. Willis & Ahwan Pandey & Laura Twomey & Sara Alaei & David D. L. Bowtell & Elizabeth L. Christie, 2024. "Timing of whole genome duplication is associated with tumor-specific MHC-II depletion in serous ovarian cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37216-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.