IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37215-3.html
   My bibliography  Save this article

Mechanism of antibody-specific deglycosylation and immune evasion by Streptococcal IgG-specific endoglycosidases

Author

Listed:
  • Beatriz Trastoy

    (Biocruces Health Research Institute
    Basque Research and Technology Alliance (BRTA)
    Ikerbasque, Basque Foundation for Science)

  • Jonathan J. Du

    (Emory University School of Medicine)

  • Javier O. Cifuente

    (Biocruces Health Research Institute
    Basque Research and Technology Alliance (BRTA))

  • Lorena Rudolph

    (Institute of Chemistry and Metabolomics)

  • Mikel García-Alija

    (Biocruces Health Research Institute
    Basque Research and Technology Alliance (BRTA))

  • Erik H. Klontz

    (University of Maryland School of Medicine
    University of Maryland School of Medicine)

  • Daniel Deredge

    (University of Maryland School of Pharmacy)

  • Nazneen Sultana

    (Emory University School of Medicine)

  • Chau G. Huynh

    (Emory University School of Medicine)

  • Maria W. Flowers

    (Emory University School of Medicine)

  • Chao Li

    (University of Maryland)

  • Diego E. Sastre

    (Emory University School of Medicine)

  • Lai-Xi Wang

    (University of Maryland)

  • Francisco Corzana

    (Universidad de La Rioja)

  • Alvaro Mallagaray

    (Institute of Chemistry and Metabolomics)

  • Eric J. Sundberg

    (Emory University School of Medicine)

  • Marcelo E. Guerin

    (Biocruces Health Research Institute
    Basque Research and Technology Alliance (BRTA)
    Ikerbasque, Basque Foundation for Science)

Abstract

Bacterial pathogens have evolved intricate mechanisms to evade the human immune system, including the production of immunomodulatory enzymes. Streptococcus pyogenes serotypes secrete two multi-modular endo-β-N-acetylglucosaminidases, EndoS and EndoS2, that specifically deglycosylate the conserved N-glycan at Asn297 on IgG Fc, disabling antibody-mediated effector functions. Amongst thousands of known carbohydrate-active enzymes, EndoS and EndoS2 represent just a handful of enzymes that are specific to the protein portion of the glycoprotein substrate, not just the glycan component. Here, we present the cryoEM structure of EndoS in complex with the IgG1 Fc fragment. In combination with small-angle X-ray scattering, alanine scanning mutagenesis, hydrolytic activity measurements, enzyme kinetics, nuclear magnetic resonance and molecular dynamics analyses, we establish the mechanisms of recognition and specific deglycosylation of IgG antibodies by EndoS and EndoS2. Our results provide a rational basis from which to engineer novel enzymes with antibody and glycan selectivity for clinical and biotechnological applications.

Suggested Citation

  • Beatriz Trastoy & Jonathan J. Du & Javier O. Cifuente & Lorena Rudolph & Mikel García-Alija & Erik H. Klontz & Daniel Deredge & Nazneen Sultana & Chau G. Huynh & Maria W. Flowers & Chao Li & Diego E. , 2023. "Mechanism of antibody-specific deglycosylation and immune evasion by Streptococcal IgG-specific endoglycosidases," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37215-3
    DOI: 10.1038/s41467-023-37215-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37215-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37215-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mikel García-Alija & Jonathan J. Du & Izaskun Ordóñez & Asier Diz-Vallenilla & Alicia Moraleda-Montoya & Nazneen Sultana & Chau G. Huynh & Chao Li & Thomas Connor Donahue & Lai-Xi Wang & Beatriz Trast, 2022. "Mechanism of cooperative N-glycan processing by the multi-modular endoglycosidase EndoE," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Beatriz Trastoy & Jonathan J. Du & Erik H. Klontz & Chao Li & Javier O. Cifuente & Lai-Xi Wang & Eric J. Sundberg & Marcelo E. Guerin, 2020. "Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego E. Sastre & Nazneen Sultana & Marcos V. A. S. Navarro & Maros Huliciak & Jonathan Du & Javier O. Cifuente & Maria Flowers & Xu Liu & Pete Lollar & Beatriz Trastoy & Marcelo E. Guerin & Eric J. S, 2024. "Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego E. Sastre & Nazneen Sultana & Marcos V. A. S. Navarro & Maros Huliciak & Jonathan Du & Javier O. Cifuente & Maria Flowers & Xu Liu & Pete Lollar & Beatriz Trastoy & Marcelo E. Guerin & Eric J. S, 2024. "Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Mikel García-Alija & Jonathan J. Du & Izaskun Ordóñez & Asier Diz-Vallenilla & Alicia Moraleda-Montoya & Nazneen Sultana & Chau G. Huynh & Chao Li & Thomas Connor Donahue & Lai-Xi Wang & Beatriz Trast, 2022. "Mechanism of cooperative N-glycan processing by the multi-modular endoglycosidase EndoE," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Abigail S. L. Sudol & John Butler & Dylan P. Ivory & Ivo Tews & Max Crispin, 2022. "Extensive substrate recognition by the streptococcal antibody-degrading enzymes IdeS and EndoS," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37215-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.