IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36363-w.html
   My bibliography  Save this article

Searching for spin glass ground states through deep reinforcement learning

Author

Listed:
  • Changjun Fan

    (National University of Defense Technology)

  • Mutian Shen

    (Washington University in St. Louis)

  • Zohar Nussinov

    (Washington University in St. Louis
    University of Oxford
    Sorbonne Université)

  • Zhong Liu

    (National University of Defense Technology)

  • Yizhou Sun

    (University of California)

  • Yang-Yu Liu

    (Brigham and Women’s Hospital and Harvard Medical School
    The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign)

Abstract

Spin glasses are disordered magnets with random interactions that are, generally, in conflict with each other. Finding the ground states of spin glasses is not only essential for understanding the nature of disordered magnets and many other physical systems, but also useful to solve a broad array of hard combinatorial optimization problems across multiple disciplines. Despite decades-long efforts, an algorithm with both high accuracy and high efficiency is still lacking. Here we introduce DIRAC – a deep reinforcement learning framework, which can be trained purely on small-scale spin glass instances and then applied to arbitrarily large ones. DIRAC displays better scalability than other methods and can be leveraged to enhance any thermal annealing method. Extensive calculations on 2D, 3D and 4D Edwards-Anderson spin glass instances demonstrate the superior performance of DIRAC over existing methods. The presented framework will help us better understand the nature of the low-temperature spin-glass phase, which is a fundamental challenge in statistical physics. Moreover, the gauge transformation technique adopted in DIRAC builds a deep connection between physics and artificial intelligence. In particular, this opens up a promising avenue for reinforcement learning models to explore in the enormous configuration space, which would be extremely helpful to solve many other hard combinatorial optimization problems.

Suggested Citation

  • Changjun Fan & Mutian Shen & Zohar Nussinov & Zhong Liu & Yizhou Sun & Yang-Yu Liu, 2023. "Searching for spin glass ground states through deep reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36363-w
    DOI: 10.1038/s41467-023-36363-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36363-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36363-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changjun Fan & Mutian Shen & Zohar Nussinov & Zhong Liu & Yizhou Sun & Yang-Yu Liu, 2023. "Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    2. Stefan Boettcher, 2023. "Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture," Nature Communications, Nature, vol. 14(1), pages 1-3, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36363-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.