IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36341-2.html
   My bibliography  Save this article

Monolayer Kagome metals AV3Sb5

Author

Listed:
  • Sun-Woo Kim

    (Sungkyunkwan University
    KAIST
    University of Cambridge)

  • Hanbit Oh

    (KAIST)

  • Eun-Gook Moon

    (KAIST)

  • Youngkuk Kim

    (Sungkyunkwan University)

Abstract

Recently, layered kagome metals AV3Sb5 (A = K, Rb, and Cs) have emerged as a fertile platform for exploring frustrated geometry, correlations, and topology. Here, using first-principles and mean-field calculations, we demonstrate that AV3Sb5 can crystallize in a mono-layered form, revealing a range of properties that render the system unique. Most importantly, the two-dimensional monolayer preserves intrinsically different symmetries from the three-dimensional layered bulk, enforced by stoichiometry. Consequently, the van Hove singularities, logarithmic divergences of the electronic density of states, are enriched, leading to a variety of competing instabilities such as doublets of charge density waves and s- and d-wave superconductivity. We show that the competition between orders can be fine-tuned in the monolayer via electron-filling of the van Hove singularities. Thus, our results suggest the monolayer kagome metal AV3Sb5 as a promising platform for designer quantum phases.

Suggested Citation

  • Sun-Woo Kim & Hanbit Oh & Eun-Gook Moon & Youngkuk Kim, 2023. "Monolayer Kagome metals AV3Sb5," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36341-2
    DOI: 10.1038/s41467-023-36341-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36341-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36341-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang Wang & Siyu Chen & Sun-Woo Kim & Bartomeu Monserrat, 2024. "Origin of competing charge density waves in kagome metal ScV6Sn6," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Hangyu Zhou & Manuel dos Santos Dias & Youguang Zhang & Weisheng Zhao & Samir Lounis, 2024. "Kagomerization of transition metal monolayers induced by two-dimensional hexagonal boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Boqin Song & Tianping Ying & Xianxin Wu & Wei Xia & Qiangwei Yin & Qinghua Zhang & Yanpeng Song & Xiaofan Yang & Jiangang Guo & Lin Gu & Xiaolong Chen & Jiangping Hu & Andreas P. Schnyder & Hechang Le, 2023. "Anomalous enhancement of charge density wave in kagome superconductor CsV3Sb5 approaching the 2D limit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Ruoting Yin & Xiang Zhu & Qiang Fu & Tianyi Hu & Lingyun Wan & Yingying Wu & Yifan Liang & Zhengya Wang & Zhen-Lin Qiu & Yuan-Zhi Tan & Chuanxu Ma & Shijing Tan & Wei Hu & Bin Li & Z. F. Wang & Jinlon, 2024. "Artificial kagome lattices of Shockley surface states patterned by halogen hydrogen-bonded organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36341-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.