IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36271-z.html
   My bibliography  Save this article

Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat

Author

Listed:
  • Chunhao Dong

    (Chinese Academy of Agricultural Sciences)

  • Lichao Zhang

    (Chinese Academy of Agricultural Sciences)

  • Qiang Zhang

    (Chinese Academy of Agricultural Sciences
    China National Rice Research Institute)

  • Yuxin Yang

    (Chinese Academy of Agricultural Sciences)

  • Danping Li

    (Chinese Academy of Agricultural Sciences)

  • Zhencheng Xie

    (Chinese Academy of Agricultural Sciences)

  • Guoqing Cui

    (Chinese Academy of Agricultural Sciences)

  • Yaoyu Chen

    (Chinese Academy of Agricultural Sciences)

  • Lifen Wu

    (Chinese Academy of Agricultural Sciences)

  • Zhan Li

    (Chinese Academy of Agricultural Sciences)

  • Guoxiang Liu

    (Chinese Academy of Agricultural Sciences)

  • Xueying Zhang

    (Chinese Academy of Agricultural Sciences)

  • Cuimei Liu

    (Chinese Academy of Sciences)

  • Jinfang Chu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Guangyao Zhao

    (Chinese Academy of Agricultural Sciences)

  • Chuan Xia

    (Chinese Academy of Agricultural Sciences)

  • Jizeng Jia

    (Chinese Academy of Agricultural Sciences)

  • Jiaqiang Sun

    (Chinese Academy of Agricultural Sciences)

  • Xiuying Kong

    (Chinese Academy of Agricultural Sciences)

  • Xu Liu

    (Chinese Academy of Agricultural Sciences)

Abstract

Wheat (Triticum aestivum L.) is a major staple food for more than one-third of the world’s population. Tiller number is an important agronomic trait in wheat, but only few related genes have been cloned. Here, we isolate a wheat mutant, tiller number1 (tn1), with much fewer tillers. We clone the TN1 gene via map-based cloning: TN1 encodes an ankyrin repeat protein with a transmembrane domain (ANK-TM). We show that a single amino acid substitution in the third conserved ankyrin repeat domain causes the decreased tiller number of tn1 mutant plants. Resequencing and haplotype analysis indicate that TN1 is conserved in wheat landraces and modern cultivars. Further, we reveal that the expression level of the abscisic acid (ABA) biosynthetic gene TaNCED3 and ABA content are significantly increased in the shoot base and tiller bud of the tn1 mutants; TN1 but not tn1 could inhibit the binding of TaPYL to TaPP2C via direct interaction with TaPYL. Taken together, we clone a key wheat tiller number regulatory gene TN1, which promotes tiller bud outgrowth probably through inhibiting ABA biosynthesis and signaling.

Suggested Citation

  • Chunhao Dong & Lichao Zhang & Qiang Zhang & Yuxin Yang & Danping Li & Zhencheng Xie & Guoqing Cui & Yaoyu Chen & Lifen Wu & Zhan Li & Guoxiang Liu & Xueying Zhang & Cuimei Liu & Jinfang Chu & Guangyao, 2023. "Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36271-z
    DOI: 10.1038/s41467-023-36271-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36271-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36271-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xueyong Li & Qian Qian & Zhiming Fu & Yonghong Wang & Guosheng Xiong & Dali Zeng & Xiaoqun Wang & Xinfang Liu & Sheng Teng & Fujimoto Hiroshi & Ming Yuan & Da Luo & Bin Han & Jiayang Li, 2003. "Control of tillering in rice," Nature, Nature, vol. 422(6932), pages 618-621, April.
    2. Huan Wang & Shenghao Zou & Yiwen Li & Fanyun Lin & Dingzhong Tang, 2020. "An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Guo & Zi-Qi Lu & Yehui Xiong & Jun-Xiang Shan & Wang-Wei Ye & Nai-Qian Dong & Yi Kan & Yi-Bing Yang & Huai-Yu Zhao & Hong-Xiao Yu & Shuang-Qin Guo & Jie-Jie Lei & Ben Liao & Jijie Chai & Hong-Xuan, 2023. "Optimization of rice panicle architecture by specifically suppressing ligand–receptor pairs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Carmen Escudero-Martinez & Max Coulter & Rodrigo Alegria Terrazas & Alexandre Foito & Rumana Kapadia & Laura Pietrangelo & Mauro Maver & Rajiv Sharma & Alessio Aprile & Jenny Morris & Pete E. Hedley &, 2022. "Identifying plant genes shaping microbiota composition in the barley rhizosphere," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36271-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.