IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36220-w.html
   My bibliography  Save this article

Rational design of N-heterocyclic compound classes via regenerative cyclization of diamines

Author

Listed:
  • Robin Fertig

    (Universität Bayreuth)

  • Felix Leowsky-Künstler

    (Universität Bayreuth)

  • Torsten Irrgang

    (Universität Bayreuth)

  • Rhett Kempe

    (Universität Bayreuth)

Abstract

The discovery of reactions is a central topic in chemistry and especially interesting if access to compound classes, which have not yet been synthesized, is permitted. N-Heterocyclic compounds are very important due to their numerous applications in life and material science. We introduce here a consecutive three-component reaction, classes of N-heterocyclic compounds, and the associated synthesis concept (regenerative cyclisation). Our reaction starts with a diamine, which reacts with an amino alcohol via dehydrogenation, condensation, and cyclisation to form a new pair of amines that undergoes ring closure with an aldehyde, carbonyldiimidazole, or a dehydrogenated amino alcohol. Hydrogen is liberated in the first reaction step and the dehydrogenation catalyst used is based on manganese.

Suggested Citation

  • Robin Fertig & Felix Leowsky-Künstler & Torsten Irrgang & Rhett Kempe, 2023. "Rational design of N-heterocyclic compound classes via regenerative cyclization of diamines," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36220-w
    DOI: 10.1038/s41467-023-36220-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36220-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36220-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saravanakumar Elangovan & Jacob Neumann & Jean-Baptiste Sortais & Kathrin Junge & Christophe Darcel & Matthias Beller, 2016. "Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duo Wei & Rui Sang & Peter Sponholz & Henrik Junge & Matthias Beller, 2022. "Reversible hydrogenation of carbon dioxide to formic acid using a Mn-pincer complex in the presence of lysine," Nature Energy, Nature, vol. 7(5), pages 438-447, May.
    2. He Zhao & Yang Wu & Chenggang Ci & Zhenda Tan & Jian Yang & Huanfeng Jiang & Pierre H. Dixneuf & Min Zhang, 2022. "Intermolecular diastereoselective annulation of azaarenes into fused N-heterocycles by Ru(II) reductive catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36220-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.