IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36143-6.html
   My bibliography  Save this article

Tailored compliant mechanisms for reconfigurable electromagnetic devices

Author

Listed:
  • Galestan Mackertich-Sengerdy

    (The Pennsylvania State University)

  • Sawyer D. Campbell

    (The Pennsylvania State University)

  • Douglas H. Werner

    (The Pennsylvania State University)

Abstract

Reconfigurable electromagnetic devices, specifically reconfigurable antennas, have shown to be integral to the future of communication systems. However, mechanically robust designs that can survive real-world, harsh environment applications and high-power conditions remain rare to this day. In this paper, the general framework for a field of both discrete and continuously mechanically reconfigurable devices is established by combining compliant mechanisms with electromagnetics. To exemplify this new concept, a reconfigurable compliant mechanism antenna is demonstrated which exhibits continuously tunable performance across a broad band of frequencies. Moreover, three additional examples are also introduced that further showcase the versatility and advanced capabilities of compliant mechanism enabled electromagnetic devices. Unlike previous approaches, this is achieved with minimal part counts, additive manufacturing techniques, and high reliability, which mechanical compliant mechanism devices are known for. The results presented exemplify how compliant mechanisms have the capacity to transform the broader field of reconfigurable electromagnetic devices.

Suggested Citation

  • Galestan Mackertich-Sengerdy & Sawyer D. Campbell & Douglas H. Werner, 2023. "Tailored compliant mechanisms for reconfigurable electromagnetic devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36143-6
    DOI: 10.1038/s41467-023-36143-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36143-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36143-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36143-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.