IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36074-2.html
   My bibliography  Save this article

Up-to-fivefold reverberating waves through the Earth’s center and distinctly anisotropic innermost inner core

Author

Listed:
  • Thanh-Son Phạm

    (The Australian National University)

  • Hrvoje Tkalčić

    (The Australian National University)

Abstract

Probing the Earth’s center is critical for understanding planetary formation and evolution. However, geophysical inferences have been challenging due to the lack of seismological probes sensitive to the Earth’s center. Here, by stacking waveforms recorded by a growing number of global seismic stations, we observe up-to-fivefold reverberating waves from selected earthquakes along the Earth’s diameter. Differential travel times of these exotic arrival pairs, hitherto unreported in seismological literature, complement and improve currently available information. The inferred transversely isotropic inner-core model contains a ~650-km thick innermost ball with P-wave speeds ~4% slower at ~50° from the Earth’s rotation axis. In contrast, the inner core’s outer shell displays much weaker anisotropy with the slowest direction in the equatorial plane. Our findings strengthen the evidence for an anisotropically-distinctive innermost inner core and its transition to a weakly anisotropic outer shell, which could be a fossilized record of a significant global event from the past.

Suggested Citation

  • Thanh-Son Phạm & Hrvoje Tkalčić, 2023. "Up-to-fivefold reverberating waves through the Earth’s center and distinctly anisotropic innermost inner core," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36074-2
    DOI: 10.1038/s41467-023-36074-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36074-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36074-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36074-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.