Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-35806-8
Download full text from publisher
References listed on IDEAS
- David Stellwagen & Robert C. Malenka, 2006. "Synaptic scaling mediated by glial TNF-α," Nature, Nature, vol. 440(7087), pages 1054-1059, April.
- Elisabetta Aloisi & Katy Corf & Julien Dupuis & Pei Zhang & Melanie Ginger & Virginie Labrousse & Michela Spatuzza & Matthias Georg Haberl & Lara Costa & Ryuichi Shigemoto & Anke Tappe-Theodor & Filip, 2017. "Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christina Koupourtidou & Veronika Schwarz & Hananeh Aliee & Simon Frerich & Judith Fischer-Sternjak & Riccardo Bocchi & Tatiana Simon-Ebert & Xianshu Bai & Swetlana Sirko & Frank Kirchhoff & Martin Di, 2024. "Shared inflammatory glial cell signature after stab wound injury, revealed by spatial, temporal, and cell-type-specific profiling of the murine cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Danijela Bataveljic & Helena Pivonkova & Vidian de Concini & Betty Hébert & Pascal Ezan & Sylvain Briault & Alexis-Pierre Bemelmans & Jacques Pichon & Arnaud Menuet & Nathalie Rouach, 2024. "Astroglial Kir4.1 potassium channel deficit drives neuronal hyperexcitability and behavioral defects in Fragile X syndrome mouse model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Nicky Scheefhals & Manon Westra & Harold D. MacGillavry, 2023. "mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Hang Zhou & Guo-Qiang Bi & Guosong Liu, 2024. "Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35806-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.