Author
Listed:
- Junfeng Lin
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Yaxin Lv
(Chinese Academy of Sciences
Tiangong University)
- Kai Song
(Chinese Academy of Sciences)
- Xuwei Song
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Hongjun Zang
(Tiangong University)
- Pingwu Du
(University of Science and Technology of China)
- Yaping Zang
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Daoben Zhu
(Chinese Academy of Sciences)
Abstract
Electrophilic aromatic substitution (EAS) is one of the most fundamental reactions in organic chemistry. Using an oriented external electric field (OEEF) instead of traditional reagents to tune the EAS reactivity can offer an environmentally friendly method to synthesize aromatic compounds and hold the promise of broadening its scope. Despite these advantages, OEEF catalysis of EAS is difficult to realize, due to the challenge of microscopically orienting OEEF along the direction of electron reorganizations. In this work, we demonstrate OEEF-catalyzed EAS reactions in a series of cycloparaphenylenes (CPPs) using the scanning tunneling microscope break junction (STM-BJ) technique. Crucially, the unique radial π-conjugation of CPPs enables a desired alignment for the OEEF to catalyze the EAS with Au STM tip (or substrate) acting as an electrophile. Under mild conditions, the OEEF-catalyzed EAS reactions can cleave the inherently inert C(sp2)-C(sp2) bond, leading to high-yield (~97%) formation of linear oligophenylenes terminated with covalent Au-C bonds. These results not only demonstrate the feasibility of OEEF catalysis of EAS, but also offer a way of exploring new mechanistic principles of classic organic reactions aided by OEEF.
Suggested Citation
Junfeng Lin & Yaxin Lv & Kai Song & Xuwei Song & Hongjun Zang & Pingwu Du & Yaping Zang & Daoben Zhu, 2023.
"Cleavage of non-polar C(sp2)‒C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution,"
Nature Communications, Nature, vol. 14(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35686-4
DOI: 10.1038/s41467-022-35686-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35686-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.