IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35610-w.html
   My bibliography  Save this article

Additive-controlled asymmetric iodocyclization enables enantioselective access to both α- and β-nucleosides

Author

Listed:
  • Qi Wang

    (Sichuan University)

  • Jiayi Mu

    (Sichuan University)

  • Jie Zeng

    (Wuhan Institute of Technology)

  • Linxi Wan

    (Sichuan University)

  • Yangyang Zhong

    (Sichuan University)

  • Qiuhong Li

    (Sichuan University)

  • Yitong Li

    (Sichuan University)

  • Huijing Wang

    (Sichuan University)

  • Fener Chen

    (Sichuan University
    Fudan University
    Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs)

Abstract

β-Nucleosides and their analogs are dominant clinically-used antiviral and antitumor drugs. α-Nucleosides, the anomers of β-nucleosides, exist in nature and have significant potential as drugs or drug carriers. Currently, the most widely used methods for synthesizing β- and α-nucleosides are via N-glycosylation and pentose aminooxazoline, respectively. However, the stereoselectivities of both methods highly depend on the assisting group at the C2’ position. Herein, we report an additive-controlled stereodivergent iodocyclization method for the selective synthesis of α- or β-nucleosides. The stereoselectivity at the anomeric carbon is controlled by the additive (NaI for β-nucleosides; PPh3S for α-nucleosides). A series of β- and α-nucleosides are prepared in high yields (up to 95%) and stereoselectivities (β:α up to 66:1, α:β up to 70:1). Notably, the introduced iodine at the C2’ position of the nucleoside is readily functionalized, leading to multiple structurally diverse nucleoside analogs, including stavudine, an FDA-approved anti-HIV agent, and molnupiravir, an FDA-approved anti-SARS-CoV-2 agent.

Suggested Citation

  • Qi Wang & Jiayi Mu & Jie Zeng & Linxi Wan & Yangyang Zhong & Qiuhong Li & Yitong Li & Huijing Wang & Fener Chen, 2023. "Additive-controlled asymmetric iodocyclization enables enantioselective access to both α- and β-nucleosides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35610-w
    DOI: 10.1038/s41467-022-35610-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35610-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35610-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Penghua Li & Haiqing He & Yunqin Zhang & Rui Yang & Lili Xu & Zixi Chen & Yingying Huang & Limei Bao & Guozhi Xiao, 2020. "Glycosyl ortho-(1-phenylvinyl)benzoates versatile glycosyl donors for highly efficient synthesis of both O-glycosides and nucleosides," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhang & Zhao-Xiang Luo & Xia Wu & Chen-Fei Gao & Peng-Yu Wang & Jin-Ze Chai & Miao Liu & Xin-Shan Ye & De-Cai Xiong, 2023. "Photosensitizer-free visible-light-promoted glycosylation enabled by 2-glycosyloxy tropone donors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35610-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.