IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35350-x.html
   My bibliography  Save this article

Parvalbumin basket cell myelination accumulates axonal mitochondria to internodes

Author

Listed:
  • Koen Kole

    (Royal Netherlands Academy of Arts and Sciences)

  • Bas J. B. Voesenek

    (Royal Netherlands Academy of Arts and Sciences)

  • Maria E. Brinia

    (Royal Netherlands Academy of Arts and Sciences
    National Kapodistrian University of Athens)

  • Naomi Petersen

    (Royal Netherlands Academy of Arts and Sciences)

  • Maarten H. P. Kole

    (Royal Netherlands Academy of Arts and Sciences
    Utrecht University)

Abstract

Parvalbumin-expressing (PV+) basket cells are fast-spiking inhibitory interneurons that exert critical control over local circuit activity and oscillations. PV+ axons are often myelinated, but the electrical and metabolic roles of interneuron myelination remain poorly understood. Here, we developed viral constructs allowing cell type-specific investigation of mitochondria with genetically encoded fluorescent probes. Single-cell reconstructions revealed that mitochondria selectively cluster to myelinated segments of PV+ basket cells, confirmed by analyses of a high-resolution electron microscopy dataset. In contrast to the increased mitochondrial densities in excitatory axons cuprizone-induced demyelination abolished mitochondrial clustering in PV+ axons. Furthermore, with genetic deletion of myelin basic protein the mitochondrial clustering was still observed at internodes wrapped by noncompacted myelin, indicating that compaction is dispensable. Finally, two-photon imaging of action potential-evoked calcium (Ca2+) responses showed that interneuron myelination attenuates both the cytosolic and mitochondrial Ca2+ transients. These findings suggest that oligodendrocyte ensheathment of PV+ axons assembles mitochondria to branch selectively fine-tune metabolic demands.

Suggested Citation

  • Koen Kole & Bas J. B. Voesenek & Maria E. Brinia & Naomi Petersen & Maarten H. P. Kole, 2022. "Parvalbumin basket cell myelination accumulates axonal mitochondria to internodes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35350-x
    DOI: 10.1038/s41467-022-35350-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35350-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35350-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Najate Benamer & Marie Vidal & Maddalena Balia & María Cecilia Angulo, 2020. "Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Martin Meschkat & Anna M. Steyer & Marie-Theres Weil & Kathrin Kusch & Olaf Jahn & Lars Piepkorn & Paola Agüi-Gonzalez & Nhu Thi Ngoc Phan & Torben Ruhwedel & Boguslawa Sadowski & Silvio O. Rizzoli & , 2022. "White matter integrity in mice requires continuous myelin synthesis at the inner tongue," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Tommy L. Lewis & Seok-Kyu Kwon & Annie Lee & Reuben Shaw & Franck Polleux, 2018. "MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    4. Cody L. Call & Dwight E. Bergles, 2021. "Cortical neurons exhibit diverse myelination patterns that scale between mouse brain regions and regenerate after demyelination," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Youngjin Lee & Brett M. Morrison & Yun Li & Sylvain Lengacher & Mohamed H. Farah & Paul N. Hoffman & Yiting Liu & Akivaga Tsingalia & Lin Jin & Ping-Wu Zhang & Luc Pellerin & Pierre J. Magistretti & J, 2012. "Oligodendroglia metabolically support axons and contribute to neurodegeneration," Nature, Nature, vol. 487(7408), pages 443-448, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Irazoki & Isabel Gordaliza-Alaguero & Emma Frank & Nikolaos Nikiforos Giakoumakis & Jordi Seco & Manuel Palacín & Anna Gumà & Lykke Sylow & David Sebastián & Antonio Zorzano, 2023. "Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Mable Lam & Koji Takeo & Rafael G. Almeida & Madeline H. Cooper & Kathryn Wu & Manasi Iyer & Husniye Kantarci & J. Bradley Zuchero, 2022. "CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Marine Lanfranchi & Sozerko Yandiev & Géraldine Meyer-Dilhet & Salma Ellouze & Martijn Kerkhofs & Raphael Dos Reis & Audrey Garcia & Camille Blondet & Alizée Amar & Anita Kneppers & Hélène Polvèche & , 2024. "The AMPK-related kinase NUAK1 controls cortical axons branching by locally modulating mitochondrial metabolic functions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Jianping Wu & Georg Kislinger & Jerome Duschek & Ayşe Damla Durmaz & Benedikt Wefers & Ruoqing Feng & Karsten Nalbach & Wolfgang Wurst & Christian Behrends & Martina Schifferer & Mikael Simons, 2024. "Nonvesicular lipid transfer drives myelin growth in the central nervous system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Christelle Glangetas & Adriane Guillaumin & Elodie Ladevèze & Anaelle Braine & Manon Gauthier & Léa Bonamy & Evelyne Doudnikoff & Thibault Dhellemmes & Marc Landry & Erwan Bézard & Stephanie Caille & , 2024. "A population of Insula neurons encodes for social preference only after acute social isolation in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Daniel M. Virga & Stevie Hamilton & Bertha Osei & Abigail Morgan & Parker Kneis & Emiliano Zamponi & Natalie J. Park & Victoria L. Hewitt & David Zhang & Kevin C. Gonzalez & Fiona M. Russell & D. Grah, 2024. "Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Li-Pao Fang & Na Zhao & Laura C. Caudal & Hsin-Fang Chang & Renping Zhao & Ching-Hsin Lin & Nadine Hainz & Carola Meier & Bernhard Bettler & Wenhui Huang & Anja Scheller & Frank Kirchhoff & Xianshu Ba, 2022. "Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Shan Yao & Min-Dong Xu & Ying Wang & Shen-Ting Zhao & Jin Wang & Gui-Fu Chen & Wen-Bing Chen & Jian Liu & Guo-Bin Huang & Wen-Juan Sun & Yan-Yan Zhang & Huan-Li Hou & Lei Li & Xiang-Dong Sun, 2023. "Astrocytic lactate dehydrogenase A regulates neuronal excitability and depressive-like behaviors through lactate homeostasis in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Ellen McMullen & Helen Hertenstein & Katrin Strassburger & Leon Deharde & Marko Brankatschk & Stefanie Schirmeier, 2023. "Glycolytically impaired Drosophila glial cells fuel neural metabolism via β-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Prateek Kumar & Annie M. Goettemoeller & Claudia Espinosa-Garcia & Brendan R. Tobin & Ali Tfaily & Ruth S. Nelson & Aditya Natu & Eric B. Dammer & Juliet V. Santiago & Sneha Malepati & Lihong Cheng & , 2024. "Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology," Nature Communications, Nature, vol. 15(1), pages 1-26, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35350-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.