IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35273-7.html
   My bibliography  Save this article

Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses

Author

Listed:
  • Frauke Ecke

    (Swedish University of Agricultural Sciences
    University of Helsinki)

  • Barbara A. Han

    (Cary Institute of Ecosystem Studies, Millbrook)

  • Birger Hörnfeldt

    (Swedish University of Agricultural Sciences)

  • Hussein Khalil

    (Swedish University of Agricultural Sciences)

  • Magnus Magnusson

    (Swedish University of Agricultural Sciences
    Swedish Forest Agency)

  • Navinder J. Singh

    (Swedish University of Agricultural Sciences)

  • Richard S. Ostfeld

    (Cary Institute of Ecosystem Studies, Millbrook)

Abstract

Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species’ synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world.

Suggested Citation

  • Frauke Ecke & Barbara A. Han & Birger Hörnfeldt & Hussein Khalil & Magnus Magnusson & Navinder J. Singh & Richard S. Ostfeld, 2022. "Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35273-7
    DOI: 10.1038/s41467-022-35273-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35273-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35273-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    2. Rory Gibb & David W. Redding & Kai Qing Chin & Christl A. Donnelly & Tim M. Blackburn & Tim Newbold & Kate E. Jones, 2020. "Zoonotic host diversity increases in human-dominated ecosystems," Nature, Nature, vol. 584(7821), pages 398-402, August.
    3. Kevin J. Olival & Parviez R. Hosseini & Carlos Zambrana-Torrelio & Noam Ross & Tiffany L. Bogich & Peter Daszak, 2017. "Erratum: Host and viral traits predict zoonotic spillover from mammals," Nature, Nature, vol. 548(7669), pages 612-612, August.
    4. Kevin J. Olival & Parviez R. Hosseini & Carlos Zambrana-Torrelio & Noam Ross & Tiffany L. Bogich & Peter Daszak, 2017. "Host and viral traits predict zoonotic spillover from mammals," Nature, Nature, vol. 546(7660), pages 646-650, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Voinson, Marina & Smadi, Charline & Billiard, Sylvain, 2022. "How does the host community structure affect the epidemiological dynamics of emerging infectious diseases?," Ecological Modelling, Elsevier, vol. 472(C).
    3. Amélie Desvars-Larrive & Anna Elisabeth Vogl & Gavrila Amadea Puspitarani & Liuhuaying Yang & Anja Joachim & Annemarie Käsbohrer, 2024. "A One Health framework for exploring zoonotic interactions demonstrated through a case study," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Barbier, Edward B., 2021. "Habitat loss and the risk of disease outbreak," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    5. Amanda R. Goldberg & Kate E. Langwig & Katherine L. Brown & Jeffrey M. Marano & Pallavi Rai & Kelsie M. King & Amanda K. Sharp & Alessandro Ceci & Christopher D. Kailing & Macy J. Kailing & Russell Br, 2024. "Widespread exposure to SARS-CoV-2 in wildlife communities," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Magdalena Meyer & Dominik W. Melville & Heather J. Baldwin & Kerstin Wilhelm & Evans Ewald Nkrumah & Ebenezer K. Badu & Samuel Kingsley Oppong & Nina Schwensow & Adam Stow & Peter Vallo & Victor M. Co, 2024. "Bat species assemblage predicts coronavirus prevalence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Lukas Zenk & Gerald Steiner & Miguel Pina e Cunha & Manfred D. Laubichler & Martin Bertau & Martin J. Kainz & Carlo Jäger & Eva S. Schernhammer, 2020. "Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19," IJERPH, MDPI, vol. 17(21), pages 1-13, October.
    8. Reaser, Jamie & Tabor, Gary M. & Becker, Daniel & Muruthi, Philip & Witt, Arne & Woodley, Stephen J. & Ruiz-Aravena, Manuel & Patz, Jonathan Alan MD, MPH & Hickey, Valerie & Hudson, Peter, 2020. "Land use-induced spillover: priority actions for protected and conserved area managers," EcoEvoRxiv bmfhw, Center for Open Science.
    9. Aingorn Chaiyes & Nattakan Ariyaraphong & Ngamphrom Sukgosa & Kornsuang Jangtarwan & Syed Farhan Ahmad & Nararat Laopichienpong & Worapong Singchat & Thitipong Panthum & Sutee Duangjai & Narongrit Mua, 2022. "Evidence of Genetic Connectivity among Lyle’s Flying Fox Populations in Thailand for Wildlife Management and One Health Framework," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    10. David, S.A. & Inácio Jr., C.M.C. & Tenreiro Machado, José A., 2021. "The recovery of global stock markets indices after impacts due to pandemics," Research in International Business and Finance, Elsevier, vol. 55(C).
    11. Victor Narat & Maud Salmona & Mamadou Kampo & Thibaut Heyer & Abdeljalil Senhaji Rachik & Severine Mercier-Delarue & Noémie Ranger & Stephanie Rupp & Philippe Ambata & Richard Njouom & François Simon , 2023. "Higher convergence of human-great ape enteric eukaryotic viromes in central African forest than in a European zoo: a One Health analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Mendes, Pedro B. & Boeger, Walter A., 2022. "Game dynamics as a driver for pathogen spillover pulses," Ecological Modelling, Elsevier, vol. 473(C).
    13. Anna C. Peterson & Himanshu Sharma & Arvind Kumar & Bruno M. Ghersi & Scott J. Emrich & Kurt J. Vandegrift & Amit Kapoor & Michael J. Blum, 2021. "Rodent Virus Diversity and Differentiation across Post-Katrina New Orleans," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    14. Paula Rogovski & Raphael da Silva & Rafael Dorighello Cadamuro & Estêvão Brasiliense de Souza & Beatriz Pereira Savi & Aline Viancelli & William Michelon & Deisi Cristina Tápparo & Helen Treichel & Da, 2021. "Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure," IJERPH, MDPI, vol. 18(16), pages 1-9, August.
    15. Cedric C. S. Tan & Jahcub Trew & Thomas P. Peacock & Kai Yi Mok & Charlie Hart & Kelvin Lau & Dongchun Ni & C. David L. Orme & Emma Ransome & William D. Pearse & Christopher M. Coleman & Dalan Bailey , 2023. "Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Marica DUMITRASCO, 2021. "Critical aspects of health security of the Republic of Moldova compared to eastern European countries, in the context of the COVID 19 pandemic," Smart Cities International Conference (SCIC) Proceedings, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 9, pages 137-149, November.
    17. Renata L. Muylaert & David A. Wilkinson & Tigga Kingston & Paolo D’Odorico & Maria Cristina Rulli & Nikolas Galli & Reju Sam John & Phillip Alviola & David T. S. Hayman, 2023. "Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Pavel B. Klimov & Qixin He, 2024. "Predicting host range expansion in parasitic mites using a global mammalian-acarine dataset," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Paul A.M. Overgaauw & Claudia M. Vinke & Marjan A.E. van Hagen & Len J.A. Lipman, 2020. "A One Health Perspective on the Human–Companion Animal Relationship with Emphasis on Zoonotic Aspects," IJERPH, MDPI, vol. 17(11), pages 1-29, May.
    20. Xinyuan Cui & Kewei Fan & Xianghui Liang & Wenjie Gong & Wu Chen & Biao He & Xiaoyuan Chen & Hai Wang & Xiao Wang & Ping Zhang & Xingbang Lu & Rujian Chen & Kaixiong Lin & Jiameng Liu & Junqiong Zhai , 2023. "Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35273-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.