IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34933-y.html
   My bibliography  Save this article

Correlation driven near-flat band Stoner excitations in a Kagome magnet

Author

Listed:
  • Abhishek Nag

    (Diamond Light Source)

  • Yiran Peng

    (Beijing Normal University)

  • Jiemin Li

    (Diamond Light Source
    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences)

  • S. Agrestini

    (Diamond Light Source)

  • H. C. Robarts

    (Diamond Light Source
    H. H. Wills Physics Laboratory, University of Bristol)

  • Mirian García-Fernández

    (Diamond Light Source)

  • A. C. Walters

    (Diamond Light Source)

  • Qi Wang

    (Renmin University of China)

  • Qiangwei Yin

    (Renmin University of China)

  • Hechang Lei

    (Renmin University of China)

  • Zhiping Yin

    (Beijing Normal University)

  • Ke-Jin Zhou

    (Diamond Light Source)

Abstract

Among condensed matter systems, Mott insulators exhibit diverse properties that emerge from electronic correlations. In itinerant metals, correlations are usually weak, but can also be enhanced via geometrical confinement of electrons, that manifest as ‘flat’ dispersionless electronic bands. In the fast developing field of topological materials, which includes Dirac and Weyl semimetals, flat bands are one of the important components that can result in unusual magnetic and transport behaviour. To date, characterisation of flat bands and their magnetism is scarce, hindering the design of novel materials. Here, we investigate the ferromagnetic Kagomé semimetal Co3Sn2S2 using resonant inelastic X-ray scattering. Remarkably, nearly non-dispersive Stoner spin excitation peaks are observed, sharply contrasting with the featureless Stoner continuum expected in conventional ferromagnetic metals. Our band structure and dynamic spin susceptibility calculations, and thermal evolution of the excitations, confirm the nearly non-dispersive Stoner excitations as unique signatures of correlations and spin-polarized electronic flat bands in Co3Sn2S2. These observations serve as a cornerstone for further exploration of band-induced symmetry-breaking orders in topological materials.

Suggested Citation

  • Abhishek Nag & Yiran Peng & Jiemin Li & S. Agrestini & H. C. Robarts & Mirian García-Fernández & A. C. Walters & Qi Wang & Qiangwei Yin & Hechang Lei & Zhiping Yin & Ke-Jin Zhou, 2022. "Correlation driven near-flat band Stoner excitations in a Kagome magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34933-y
    DOI: 10.1038/s41467-022-34933-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34933-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34933-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Cao & Valla Fatemi & Ahmet Demir & Shiang Fang & Spencer L. Tomarken & Jason Y. Luo & Javier D. Sanchez-Yamagishi & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Ray C. Ashoori & Pablo, 2018. "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 80-84, April.
    2. Guorui Chen & Aaron L. Sharpe & Patrick Gallagher & Ilan T. Rosen & Eli J. Fox & Lili Jiang & Bosai Lyu & Hongyuan Li & Kenji Watanabe & Takashi Taniguchi & Jeil Jung & Zhiwen Shi & David Goldhaber-Go, 2019. "Signatures of tunable superconductivity in a trilayer graphene moiré superlattice," Nature, Nature, vol. 572(7768), pages 215-219, August.
    3. I. I. Mazin & Harald O. Jeschke & Frank Lechermann & Hunpyo Lee & Mario Fink & Ronny Thomale & Roser Valentí, 2014. "Theoretical prediction of a strongly correlated Dirac metal," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Yu-Bo Liu & Jing Zhou & Congjun Wu & Fan Yang, 2023. "Charge-4e superconductivity and chiral metal in 45°-twisted bilayer cuprates and related bilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Junzhu Li & Abdus Samad & Yue Yuan & Qingxiao Wang & Mohamed Nejib Hedhili & Mario Lanza & Udo Schwingenschlögl & Iwnetim Abate & Deji Akinwande & Zheng Liu & Bo Tian & Xixiang Zhang, 2024. "Single-crystal hBN Monolayers from Aligned Hexagonal Islands," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Xinyu Wang & Jinghua Jiang & Juan Chen & Zhawure Asilehan & Wentao Tang & Chenhui Peng & Rui Zhang, 2024. "Moiré effect enables versatile design of topological defects in nematic liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    10. Haoyu Qin & Shaohu Chen & Weixuan Zhang & Huizhen Zhang & Ruhao Pan & Junjie Li & Lei Shi & Jian Zi & Xiangdong Zhang, 2024. "Optical moiré bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. C. D. Dashwood & A. H. Walker & M. P. Kwasigroch & L. S. I. Veiga & Q. Faure & J. G. Vale & D. G. Porter & P. Manuel & D. D. Khalyavin & F. Orlandi & C. V. Colin & O. Fabelo & F. Krüger & R. S. Perry , 2023. "Strain control of a bandwidth-driven spin reorientation in Ca3Ru2O7," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Jubin Nathawat & Ishiaka Mansaray & Kohei Sakanashi & Naoto Wada & Michael D. Randle & Shenchu Yin & Keke He & Nargess Arabchigavkani & Ripudaman Dixit & Bilal Barut & Miao Zhao & Harihara Ramamoorthy, 2023. "Signatures of hot carriers and hot phonons in the re-entrant metallic and semiconducting states of Moiré-gapped graphene," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Hongyun Zhang & Qian Li & Youngju Park & Yujin Jia & Wanying Chen & Jiaheng Li & Qinxin Liu & Changhua Bao & Nicolas Leconte & Shaohua Zhou & Yuan Wang & Kenji Watanabe & Takashi Taniguchi & Jose Avil, 2024. "Observation of dichotomic field-tunable electronic structure in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Anqi Wang & Yupeng Li & Guang Yang & Dayu Yan & Yuan Huang & Zhaopeng Guo & Jiacheng Gao & Jierui Huang & Qiaochu Zeng & Degui Qian & Hao Wang & Xingchen Guo & Fanqi Meng & Qinghua Zhang & Lin Gu & Xi, 2023. "A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    17. Shuichi Iwakiri & Alexandra Mestre-Torà & Elías Portolés & Marieke Visscher & Marta Perego & Giulia Zheng & Takashi Taniguchi & Kenji Watanabe & Manfred Sigrist & Thomas Ihn & Klaus Ensslin, 2024. "Tunable quantum interferometer for correlated moiré electrons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Ying Xiang & Qing Li & Yongkai Li & Wei Xie & Huan Yang & Zhiwei Wang & Yugui Yao & Hai-Hu Wen, 2021. "Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34933-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.