IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34789-2.html
   My bibliography  Save this article

Sound velocity of hexagonal close-packed iron to the Earth’s inner core pressure

Author

Listed:
  • Daijo Ikuta

    (Tohoku University)

  • Eiji Ohtani

    (Tohoku University)

  • Hiroshi Fukui

    (RIKEN SPring-8 Center
    Japan Synchrotron Radiation Research Institute)

  • Takeshi Sakai

    (Ehime University)

  • Daisuke Ishikawa

    (RIKEN SPring-8 Center
    Japan Synchrotron Radiation Research Institute)

  • Alfred Q. R. Baron

    (RIKEN SPring-8 Center
    Japan Synchrotron Radiation Research Institute)

Abstract

Here we determine the compressional and shear wave velocities (vp and vs) of hexagonal close-packed iron, a candidate for the main constituent of the Earth’s inner core, to pressures above 300 gigapascals using a newly designed diamond anvil cell and inelastic X-ray scattering combined with X-ray diffraction. The present results reveal that the vp and vs of the Preliminary reference Earth model (PREM) inner core are 4(±2)% and 36(±17)% slower than those of the pure iron, respectively at the centre of the core. The density and sound velocity of the PREM inner core can be explained by addition of 3(±1) wt% silicon and 3(±2) wt% sulphur to iron‒5 wt% nickel alloy. Our suggested inner core composition is consistent with the existing outer core model with oxygen, as the growth of the inner core may have created a secular enrichment of the element in the outer core.

Suggested Citation

  • Daijo Ikuta & Eiji Ohtani & Hiroshi Fukui & Takeshi Sakai & Daisuke Ishikawa & Alfred Q. R. Baron, 2022. "Sound velocity of hexagonal close-packed iron to the Earth’s inner core pressure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34789-2
    DOI: 10.1038/s41467-022-34789-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34789-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34789-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu He & Shichuan Sun & Duck Young Kim & Bo Gyu Jang & Heping Li & Ho-kwang Mao, 2022. "Superionic iron alloys and their seismic velocities in Earth’s inner core," Nature, Nature, vol. 602(7896), pages 258-262, February.
    2. Agnès Dewaele & Paul Loubeyre & Florent Occelli & Olivier Marie & Mohamed Mezouar, 2018. "Toroidal diamond anvil cell for detailed measurements under extreme static pressures," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thuany Costa de Lima & Thanh-Son Phạm & Xiaolong Ma & Hrvoje Tkalčić, 2023. "An estimate of absolute shear-wave speed in the Earth’s inner core," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Valery I. Levitas & Achyut Dhar & K. K. Pandey, 2023. "Tensorial stress-plastic strain fields in α - ω Zr mixture, transformation kinetics, and friction in diamond-anvil cell," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. M. I. Eremets & V. S. Minkov & P. P. Kong & A. P. Drozdov & S. Chariton & V. B. Prakapenka, 2023. "Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Kyla de Villa & Felipe González-Cataldo & Burkhard Militzer, 2023. "Double superionicity in icy compounds at planetary interior conditions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yifan Tian & Peiyu Zhang & Wei Zhang & Xiaolei Feng & Simon A. T. Redfern & Hanyu Liu, 2024. "Iron alloys of volatile elements in the deep Earth’s interior," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Shichuan Sun & Yu He & Junyi Yang & Yufeng Lin & Jinfeng Li & Duck Young Kim & Heping Li & Ho-kwang Mao, 2023. "Superionic effect and anisotropic texture in Earth’s inner core driven by geomagnetic field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34789-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.