IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34751-2.html
   My bibliography  Save this article

Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics

Author

Listed:
  • Vlad-Stefan Raducanu

    (King Abdullah University of Science and Technology)

  • Muhammad Tehseen

    (King Abdullah University of Science and Technology)

  • Amani Al-Amodi

    (King Abdullah University of Science and Technology)

  • Luay I. Joudeh

    (King Abdullah University of Science and Technology)

  • Alfredo Biasio

    (King Abdullah University of Science and Technology)

  • Samir M. Hamdan

    (King Abdullah University of Science and Technology)

Abstract

The final steps of lagging strand synthesis induce maturation of Okazaki fragments via removal of the RNA primers and ligation. Iterative cycles between Polymerase δ (Polδ) and Flap endonuclease-1 (FEN1) remove the primer, with an intermediary nick structure generated for each cycle. Here, we show that human Polδ is inefficient in releasing the nick product from FEN1, resulting in non-processive and remarkably slow RNA removal. Ligase 1 (Lig1) can release the nick from FEN1 and actively drive the reaction toward ligation. These mechanisms are coordinated by PCNA, which encircles DNA, and dynamically recruits Polδ, FEN1, and Lig1 to compete for their substrates. Our findings call for investigating additional pathways that may accelerate RNA removal in human cells, such as RNA pre-removal by RNase Hs, which, as demonstrated herein, enhances the maturation rate ~10-fold. They also suggest that FEN1 may attenuate the various activities of Polδ during DNA repair and recombination.

Suggested Citation

  • Vlad-Stefan Raducanu & Muhammad Tehseen & Amani Al-Amodi & Luay I. Joudeh & Alfredo Biasio & Samir M. Hamdan, 2022. "Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34751-2
    DOI: 10.1038/s41467-022-34751-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34751-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34751-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudia Lancey & Muhammad Tehseen & Vlad-Stefan Raducanu & Fahad Rashid & Nekane Merino & Timothy J. Ragan & Christos G. Savva & Manal S. Zaher & Afnan Shirbini & Francisco J. Blanco & Samir M. Hamdan, 2020. "Structure of the processive human Pol δ holoenzyme," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. John M. Pascal & Patrick J. O'Brien & Alan E. Tomkinson & Tom Ellenberger, 2004. "Human DNA ligase I completely encircles and partially unwinds nicked DNA," Nature, Nature, vol. 432(7016), pages 473-478, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerry Blair & Muhammad Tehseen & Vlad-Stefan Raducanu & Taha Shahid & Claudia Lancey & Fahad Rashid & Ramon Crehuet & Samir M. Hamdan & Alfredo De Biasio, 2022. "Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerry Blair & Muhammad Tehseen & Vlad-Stefan Raducanu & Taha Shahid & Claudia Lancey & Fahad Rashid & Ramon Crehuet & Samir M. Hamdan & Alfredo De Biasio, 2022. "Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Yejinpeng Wang & Lingao Ju & Gang Wang & Kaiyu Qian & Wan Jin & Mingxing Li & Jingtian Yu & Yiliang Shi & Yongzhi Wang & Yi Zhang & Yu Xiao & Xinghuan Wang, 2023. "DNA polymerase POLD1 promotes proliferation and metastasis of bladder cancer by stabilizing MYC," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Qun Tang & Mitchell Gulkis & Robert McKenna & Melike Çağlayan, 2022. "Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Claudia Lancey & Muhammad Tehseen & Souvika Bakshi & Matthew Percival & Masateru Takahashi & Mohamed A. Sobhy & Vlad S. Raducanu & Kerry Blair & Frederick W. Muskett & Timothy J. Ragan & Ramon Crehuet, 2021. "Cryo-EM structure of human Pol κ bound to DNA and mono-ubiquitylated PCNA," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34751-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.