IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34677-9.html
   My bibliography  Save this article

Enormous-stiffness-changing polymer networks by glass transition mediated microphase separation

Author

Listed:
  • Lie Chen

    (Beihang University
    Beijing Machine and Equipment institute)

  • Cong Zhao

    (Beihang University)

  • Jin Huang

    (Beihang University)

  • Jiajia Zhou

    (Beihang University)

  • Mingjie Liu

    (Beihang University
    Beihang University)

Abstract

The rapid development of flexible electronics and soft robotics has an urgent demand for materials with wide-range switchable stiffness. Here, we report a polymer network that can isochorically and reversibly switch between soft ionogel and rigid plastic accompanied by a gigantic stiffness change from about 600 Pa to 85 MPa. This transition is realized by introducing polymer vitrification to regulate the liquid–liquid phase separation, namely the Berghmans’ point in the phase diagram of binary gel systems. Regulating the Lewis acid-base interactions between polymer and ionic liquids, the stiffness-changing ratio of polymer network can be tuned from 10 to more than 105. These wide-range stiffness-changing ionogels show excellent shape adaptability and reconfigurability, which can enhance the interfacial adhesion between ionogel and electrode by an order of magnitude and reduce interfacial impedance by 75%.

Suggested Citation

  • Lie Chen & Cong Zhao & Jin Huang & Jiajia Zhou & Mingjie Liu, 2022. "Enormous-stiffness-changing polymer networks by glass transition mediated microphase separation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34677-9
    DOI: 10.1038/s41467-022-34677-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34677-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34677-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Xie, 2010. "Tunable polymer multi-shape memory effect," Nature, Nature, vol. 464(7286), pages 267-270, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34677-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.