IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34609-7.html
   My bibliography  Save this article

Fertilization mode differentially impacts the evolution of vertebrate sperm components

Author

Listed:
  • Ariel F. Kahrl

    (Stockholm University
    Hamilton College)

  • Rhonda R. Snook

    (Stockholm University)

  • John L. Fitzpatrick

    (Stockholm University)

Abstract

Environmental change frequently drives morphological diversification, including at the cellular level. Transitions in the environment where fertilization occurs (i.e., fertilization mode) are hypothesized to be a driver of the extreme diversity in sperm morphology observed in animals. Yet how fertilization mode impacts the evolution of sperm components—head, midpiece, and flagellum—each with different functional roles that must act as an integrated unit remains unclear. Here, we test this hypothesis by examining the evolution of sperm component lengths across 1103 species of vertebrates varying in fertilization mode (external vs. internal fertilization). Sperm component length is explained in part by fertilization mode across vertebrates, but how fertilization mode influences sperm evolution varies among sperm components and vertebrate clades. We also identify evolutionary responses not influenced by fertilization mode: midpieces evolve rapidly in both external and internal fertilizers. Fertilization mode thus influences vertebrate sperm evolution through complex component- and clade-specific evolutionary responses.

Suggested Citation

  • Ariel F. Kahrl & Rhonda R. Snook & John L. Fitzpatrick, 2022. "Fertilization mode differentially impacts the evolution of vertebrate sperm components," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34609-7
    DOI: 10.1038/s41467-022-34609-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34609-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34609-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samuel H. Church & Seth Donoughe & Bruno A. S. de Medeiros & Cassandra G. Extavour, 2019. "Insect egg size and shape evolve with ecology but not developmental rate," Nature, Nature, vol. 571(7763), pages 58-62, July.
    2. Leigh W. Simmons & John L. Fitzpatrick, 2019. "Female genitalia can evolve more rapidly and divergently than male genitalia," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loren Koçillari & Silvia Cattelan & Maria Berica Rasotto & Flavio Seno & Amos Maritan & Andrea Pilastro, 2024. "Tetrapod sperm length evolution in relation to body mass is shaped by multiple trade-offs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth Donoughe & Jordan Hoffmann & Taro Nakamura & Chris H. Rycroft & Cassandra G. Extavour, 2022. "Nuclear speed and cycle length co-vary with local density during syncytial blastoderm formation in a cricket," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Gonçalo I André & Renée C Firman & Leigh W Simmons, 2021. "The effect of baculum shape and mating behavior on mating-induced prolactin release in female house mice," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1192-1201.
    3. Xueying C. Li & Lautaro Gandara & Måns Ekelöf & Kerstin Richter & Theodore Alexandrov & Justin Crocker, 2024. "Rapid response of fly populations to gene dosage across development and generations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34609-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.