IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34275-9.html
   My bibliography  Save this article

Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer

Author

Listed:
  • Gil Shamai

    (Technion)

  • Amir Livne

    (Technion)

  • António Polónia

    (Ipatimup)

  • Edmond Sabo

    (Carmel Medical Center)

  • Alexandra Cretu

    (Carmel Medical Center)

  • Gil Bar-Sela

    (Haemek Medical Center
    Technion)

  • Ron Kimmel

    (Technion
    Technion)

Abstract

Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxylin and eosin (H&E) is a robust staining used routinely for cancer diagnosis. Here, we show that PD-L1 expression can be predicted from H&E-stained images by employing state-of-the-art deep learning techniques. With the help of two expert pathologists and a designed annotation software, we construct a dataset to assess the feasibility of PD-L1 prediction from H&E in breast cancer. In a cohort of 3,376 patients, our system predicts the PD-L1 status in a high area under the curve (AUC) of 0.91 – 0.93. Our system is validated on two external datasets, including an independent clinical trial cohort, showing consistent prediction performance. Furthermore, the proposed system predicts which cases are prone to pathologists miss-interpretation, showing it can serve as a decision support and quality assurance system in clinical practice.

Suggested Citation

  • Gil Shamai & Amir Livne & António Polónia & Edmond Sabo & Alexandra Cretu & Gil Bar-Sela & Ron Kimmel, 2022. "Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34275-9
    DOI: 10.1038/s41467-022-34275-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34275-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34275-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kun-Hsing Yu & Ce Zhang & Gerald J. Berry & Russ B. Altman & Christopher Ré & Daniel L. Rubin & Michael Snyder, 2016. "Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    2. Nikhil Naik & Ali Madani & Andre Esteva & Nitish Shirish Keskar & Michael F. Press & Daniel Ruderman & David B. Agus & Richard Socher, 2020. "Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darui Jin & Shangying Liang & Artem Shmatko & Alexander Arnold & David Horst & Thomas G. P. Grünewald & Moritz Gerstung & Xiangzhi Bai, 2024. "Teacher-student collaborated multiple instance learning for pan-cancer PDL1 expression prediction from histopathology slides," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Kévin Cortacero & Brienne McKenzie & Sabina Müller & Roxana Khazen & Fanny Lafouresse & Gaëlle Corsaut & Nathalie Acker & François-Xavier Frenois & Laurence Lamant & Nicolas Meyer & Béatrice Vergier &, 2023. "Evolutionary design of explainable algorithms for biomedical image segmentation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Lida Qiu & Deyong Kang & Chuan Wang & Wenhui Guo & Fangmeng Fu & Qingxiang Wu & Gangqin Xi & Jiajia He & Liqin Zheng & Qingyuan Zhang & Xiaoxia Liao & Lianhuang Li & Jianxin Chen & Haohua Tu, 2022. "Intratumor graph neural network recovers hidden prognostic value of multi-biomarker spatial heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Pei-Chen Tsai & Tsung-Hua Lee & Kun-Chi Kuo & Fang-Yi Su & Tsung-Lu Michael Lee & Eliana Marostica & Tomotaka Ugai & Melissa Zhao & Mai Chan Lau & Juha P. Väyrynen & Marios Giannakis & Yasutoshi Takas, 2023. "Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Xueyi Zheng & Ruixuan Wang & Xinke Zhang & Yan Sun & Haohuan Zhang & Zihan Zhao & Yuanhang Zheng & Jing Luo & Jiangyu Zhang & Hongmei Wu & Dan Huang & Wenbiao Zhu & Jianning Chen & Qinghua Cao & Hong , 2022. "A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Shidan Wang & Ruichen Rong & Qin Zhou & Donghan M. Yang & Xinyi Zhang & Xiaowei Zhan & Justin Bishop & Zhikai Chi & Clare J. Wilhelm & Siyuan Zhang & Curtis R. Pickering & Mark G. Kris & John Minna & , 2023. "Deep learning of cell spatial organizations identifies clinically relevant insights in tissue images," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Darui Jin & Shangying Liang & Artem Shmatko & Alexander Arnold & David Horst & Thomas G. P. Grünewald & Moritz Gerstung & Xiangzhi Bai, 2024. "Teacher-student collaborated multiple instance learning for pan-cancer PDL1 expression prediction from histopathology slides," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Adalberto Claudio Quiros & Nicolas Coudray & Anna Yeaton & Xinyu Yang & Bojing Liu & Hortense Le & Luis Chiriboga & Afreen Karimkhan & Navneet Narula & David A. Moore & Christopher Y. Park & Harvey Pa, 2024. "Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    8. Stephen F Weng & Luis Vaz & Nadeem Qureshi & Joe Kai, 2019. "Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    9. Igor Dolgalev & Hua Zhou & Nina Murrell & Hortense Le & Theodore Sakellaropoulos & Nicolas Coudray & Kelsey Zhu & Varshini Vasudevaraja & Anna Yeaton & Chandra Goparaju & Yonghua Li & Imran Sulaiman &, 2023. "Inflammation in the tumor-adjacent lung as a predictor of clinical outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Byungsoo Ahn & Damin Moon & Hyun-Soo Kim & Chung Lee & Nam Hoon Cho & Heung-Kook Choi & Dongmin Kim & Jung-Yun Lee & Eun Ji Nam & Dongju Won & Hee Jung An & Sun Young Kwon & Su-Jin Shin & Hye Ra Jung , 2024. "Histopathologic image–based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34275-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.