IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33901-w.html
   My bibliography  Save this article

Ultrafast light-induced dynamics in the microsolvated biomolecular indole chromophore with water

Author

Listed:
  • Jolijn Onvlee

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg
    Radboud University)

  • Sebastian Trippel

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

  • Jochen Küpper

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg
    Universität Hamburg)

Abstract

Interactions between proteins and their solvent environment can be studied in a bottom-up approach using hydrogen-bonded chromophore-solvent clusters. The ultrafast dynamics following UV-light-induced electronic excitation of the chromophores, potential radiation damage, and their dependence on solvation are important open questions. The microsolvation effect is challenging to study due to the inherent mix of the produced gas-phase aggregates. We use the electrostatic deflector to spatially separate different molecular species in combination with pump-probe velocity-map-imaging experiments. We demonstrate that this powerful experimental approach reveals intimate details of the UV-induced dynamics in the near-UV-absorbing prototypical biomolecular indole-water system. We determine the time-dependent appearance of the different reaction products and disentangle the occurring ultrafast processes. This approach ensures that the reactants are well-known and that detailed characteristics of the specific reaction products are accessible – paving the way for the complete chemical-reactivity experiment.

Suggested Citation

  • Jolijn Onvlee & Sebastian Trippel & Jochen Küpper, 2022. "Ultrafast light-induced dynamics in the microsolvated biomolecular indole chromophore with water," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33901-w
    DOI: 10.1038/s41467-022-33901-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33901-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33901-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cosmin I. Blaga & Junliang Xu & Anthony D. DiChiara & Emily Sistrunk & Kaikai Zhang & Pierre Agostini & Terry A. Miller & Louis F. DiMauro & C. D. Lin, 2012. "Imaging ultrafast molecular dynamics with laser-induced electron diffraction," Nature, Nature, vol. 483(7388), pages 194-197, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenzhen Wang & Xiaoqing Hu & Xiaorui Xue & Shengpeng Zhou & Xiaokai Li & Yizhang Yang & Jiaqi Zhou & Zheng Shu & Banchi Zhao & Xitao Yu & Maomao Gong & Zhenpeng Wang & Pan Ma & Yong Wu & Xiangjun Che, 2023. "Directly imaging excited state-resolved transient structures of water induced by valence and inner-shell ionisation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yuankai Guo & Wei Lin & Wenlong Wang & Runsen Zhang & Tao Liu & Yiqing Xu & Xiaoming Wei & Zhongmin Yang, 2023. "Unveiling the complexity of spatiotemporal soliton molecules in real time," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Lixin He & Siqi Sun & Pengfei Lan & Yanqing He & Bincheng Wang & Pu Wang & Xiaosong Zhu & Liang Li & Wei Cao & Peixiang Lu & C. D. Lin, 2022. "Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Kiana Baumgärtner & Marvin Reuner & Christian Metzger & Dmytro Kutnyakhov & Michael Heber & Federico Pressacco & Chul-Hee Min & Thiago R. F. Peixoto & Mario Reiser & Chan Kim & Wei Lu & Roman Shayduk , 2022. "Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a FEL," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Peipei Ge & Yankun Dou & Meng Han & Yiqi Fang & Yongkai Deng & Chengyin Wu & Qihuang Gong & Yunquan Liu, 2024. "Spatiotemporal imaging and shaping of electron wave functions using novel attoclock interferometry," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33901-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.