IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33649-3.html
   My bibliography  Save this article

ChAd155-RSV vaccine is immunogenic and efficacious against bovine RSV infection-induced disease in young calves

Author

Listed:
  • Rineke Jong

    (Wageningen Bioveterinary Research, Wageningen University & Research)

  • Norbert Stockhofe-Zurwieden

    (Wageningen Bioveterinary Research, Wageningen University & Research)

  • Judith Bonsing

    (Wageningen Bioveterinary Research, Wageningen University & Research)

  • Kai-Fen Wang

    (GSK
    Atara Biotherapeutics, Inc.)

  • Sarah Vandepaer

    (CONSULTYS Benelux S.A)

  • Badiaa Bouzya

    (GSK, Rue de l’Institut 89)

  • Jean-François Toussaint

    (GSK, Rue de l’Institut 89
    Sanofi-Pasteur, 14 Espace Henry Vallée)

  • Ilse Dieussaert

    (GSK, Rue de l’Institut 89)

  • Haifeng Song

    (GSK
    Suzhou Abogen Bioscience Ltd)

  • Ann-Muriel Steff

    (GSK)

Abstract

Respiratory syncytial virus (RSV) infection causes a substantial lower-respiratory-tract disease burden in infants, constituting a global priority for vaccine development. We evaluated immunogenicity, safety and efficacy of a chimpanzee adenovirus (ChAd)-based vaccine candidate, ChAd155-RSV, in a bovine RSV (bRSV) challenge model. This model closely reproduces the pathogenesis/clinical manifestations of severe pediatric RSV disease. In seronegative calves, ChAd155-RSV elicits robust neutralizing antibody responses against human RSV. Two doses protect calves from clinical symptoms/lung pathological changes, and reduce nasal/lung virus loads after both a short (4-week) and a long (16-week) interval between last immunization and subsequent bRSV challenge. The one-dose regimen confers near-complete or significant protection after short-term or long-term intervals before challenge, respectively. The presence of pre-existing bRSV-antibodies does not affect short-term efficacy of the two-dose regimen. Immunized calves present no clinical signs of enhanced respiratory disease. Collectively, this supports the development of ChAd155-RSV as an RSV vaccine candidate for infants.

Suggested Citation

  • Rineke Jong & Norbert Stockhofe-Zurwieden & Judith Bonsing & Kai-Fen Wang & Sarah Vandepaer & Badiaa Bouzya & Jean-François Toussaint & Ilse Dieussaert & Haifeng Song & Ann-Muriel Steff, 2022. "ChAd155-RSV vaccine is immunogenic and efficacious against bovine RSV infection-induced disease in young calves," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33649-3
    DOI: 10.1038/s41467-022-33649-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33649-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33649-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daiyin Tian & Michael B. Battles & Syed M. Moin & Man Chen & Kayvon Modjarrad & Azad Kumar & Masaru Kanekiyo & Kevin W. Graepel & Noor M. Taher & Anne L. Hotard & Martin L. Moore & Min Zhao & Zi-Zheng, 2017. "Structural basis of respiratory syncytial virus subtype-dependent neutralization by an antibody targeting the fusion glycoprotein," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryan S. Sibert & Joseph Y. Kim & Jie E. Yang & Zunlong Ke & Christopher C. Stobart & Martin L. Moore & Elizabeth R. Wright, 2024. "Assembly of respiratory syncytial virus matrix protein lattice and its coordination with fusion glycoprotein trimers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Xiao Xiao & Arthur Fridman & Lu Zhang & Pavlo Pristatsky & Eberhard Durr & Michael Minnier & Aimin Tang & Kara S. Cox & Zhiyun Wen & Renee Moore & Dongrui Tian & Jennifer D. Galli & Scott Cosmi & Mich, 2022. "Profiling of hMPV F-specific antibodies isolated from human memory B cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Fabian Sesterhenn & Che Yang & Jaume Bonet & Johannes T. Cramer & Xiaolin Wen & Yimeng Wang & Chi I. Chiang & Luciano Andres Abriata & Iga Kucharska & Giacomo Castoro & Sabrina S. Vollers & Marie Gall, 2020. "De novo protein design enables the precise induction of RSV-neutralizing antibodies," Post-Print hal-02677103, HAL.
    4. Karen J. Gonzalez & Jiachen Huang & Miria F. Criado & Avik Banerjee & Stephen M. Tompkins & Jarrod J. Mousa & Eva-Maria Strauch, 2024. "A general computational design strategy for stabilizing viral class I fusion proteins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33649-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.