IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33446-y.html
   My bibliography  Save this article

Evolution of Br⋯Br contacts in enantioselective molecular recognition during chiral 2D crystallization

Author

Listed:
  • Zhen-Yu Yi

    (CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xue-Qing Yang

    (CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences
    Hubei University)

  • Jun-Jie Duan

    (CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiong Zhou

    (Peking University)

  • Ting Chen

    (CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences)

  • Dong Wang

    (CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Li-Jun Wan

    (CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Halogen-mediated interactions play an important role in molecular recognition and crystallization in many chemical and biological systems, whereas their effect on homochiral versus heterochiral recognition and crystallization has rarely been explored. Here we demonstrate the evolution of Br⋯Br contacts in chiral recognition during 2D crystallization. On Ag(100), type I contacts prevail at low coverage and lead to homochiral recognition and the formation of 2D conglomerates; whereas type II contacts mediating heterochiral recognition are suppressed at medium coverage and appear in the racemates induced by structural transitions at high coverage. On Ag(111), type I contacts dominate the 2D crystallization and generate 2D conglomerates exclusively. DFT calculations suggest that the energy difference between type I and type II contacts is reversed upon adsorption due to the substrate induced mismatch energy penalty. This result provides fundamental understanding of halogen-mediated interactions in molecular recognition and crystallization on surface.

Suggested Citation

  • Zhen-Yu Yi & Xue-Qing Yang & Jun-Jie Duan & Xiong Zhou & Ting Chen & Dong Wang & Li-Jun Wan, 2022. "Evolution of Br⋯Br contacts in enantioselective molecular recognition during chiral 2D crystallization," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33446-y
    DOI: 10.1038/s41467-022-33446-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33446-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33446-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angelika Kühnle & Trolle R. Linderoth & Bjørk Hammer & Flemming Besenbacher, 2002. "Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy," Nature, Nature, vol. 415(6874), pages 891-893, February.
    2. Jalmar Tschakert & Qigang Zhong & Daniel Martin-Jimenez & Jaime Carracedo-Cosme & Carlos Romero-Muñiz & Pascal Henkel & Tobias Schlöder & Sebastian Ahles & Doreen Mollenhauer & Hermann A. Wegner & Pab, 2020. "Surface-controlled reversal of the selectivity of halogen bonds," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Ignacio Piquero-Zulaica & Jorge Lobo-Checa & Ali Sadeghi & Zakaria M. Abd El-Fattah & Chikahiko Mitsui & Toshihiro Okamoto & Rémy Pawlak & Tobias Meier & Andrés Arnau & J. Enrique Ortega & Jun Takeya , 2017. "Precise engineering of quantum dot array coupling through their barrier widths," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liangliang Cai & Tianhao Gao & Andrew T. S. Wee, 2024. "Topology selectivity of a conformationally flexible precursor through selenium doping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Chao Li & Christoph Kaspar & Ping Zhou & Jung-Ching Liu & Outhmane Chahib & Thilo Glatzel & Robert Häner & Ulrich Aschauer & Silvio Decurtins & Shi-Xia Liu & Michael Thoss & Ernst Meyer & Rémy Pawlak, 2023. "Strong signature of electron-vibration coupling in molecules on Ag(111) triggered by tip-gated discharging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Ruoting Yin & Xiang Zhu & Qiang Fu & Tianyi Hu & Lingyun Wan & Yingying Wu & Yifan Liang & Zhengya Wang & Zhen-Lin Qiu & Yuan-Zhi Tan & Chuanxu Ma & Shijing Tan & Wei Hu & Bin Li & Z. F. Wang & Jinlon, 2024. "Artificial kagome lattices of Shockley surface states patterned by halogen hydrogen-bonded organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Xinnan Peng & Harshitra Mahalingam & Shaoqiang Dong & Pingo Mutombo & Jie Su & Mykola Telychko & Shaotang Song & Pin Lyu & Pei Wen Ng & Jishan Wu & Pavel Jelínek & Chunyan Chi & Aleksandr Rodin & Jion, 2021. "Visualizing designer quantum states in stable macrocycle quantum corrals," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Yunjun Cao & Joel Mieres-Perez & Julien Frederic Rowen & Elsa Sanchez-Garcia & Wolfram Sander & Karina Morgenstern, 2023. "Chirality control of a single carbene molecule by tip-induced van der Waals interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33446-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.