IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33233-9.html
   My bibliography  Save this article

Increased household transmission and immune escape of the SARS-CoV-2 Omicron compared to Delta variants

Author

Listed:
  • Neda Jalali

    (Norwegian Institute of Public Health)

  • Hilde K. Brustad

    (University of Oslo)

  • Arnoldo Frigessi

    (University of Oslo
    Oslo University Hospital)

  • Emily A. MacDonald

    (Norwegian Institute of Public Health)

  • Hinta Meijerink

    (Norwegian Institute of Public Health)

  • Siri L. Feruglio

    (Norwegian Institute of Public Health)

  • Karin M. Nygård

    (Norwegian Institute of Public Health)

  • Gunnar Rø

    (Norwegian Institute of Public Health)

  • Elisabeth H. Madslien

    (Norwegian Institute of Public Health)

  • Birgitte Freiesleben de Blasio

    (Norwegian Institute of Public Health
    University of Oslo)

Abstract

Understanding the epidemic growth of the novel SARS-CoV-2 Omicron variant is critical for public health. We compared the ten-day secondary attack rate (SAR) of the Omicron and Delta variants in households using Norwegian contact tracing data, December 2021 - January 2022. Omicron SAR was higher than Delta, with a relative risk (RR) of 1.41 (95% CI 1.27-1.56). We observed increased susceptibility to Omicron infection in household contacts compared to Delta, independent of contacts’ vaccination status. Among three-dose vaccinated contacts, the mean SAR was lower for both variants. We found increased Omicron transmissibility from primary cases to contacts in all vaccination groups, except 1-dose vaccinated, compared to Delta. Omicron SAR of three-dose vaccinated primary cases was high, 46% vs 11 % for Delta. In conclusion, three-dose vaccinated primary cases with Omicron infection can efficiently spread in households, while three-dose vaccinated contacts have a lower risk of being infected by Delta and Omicron.

Suggested Citation

  • Neda Jalali & Hilde K. Brustad & Arnoldo Frigessi & Emily A. MacDonald & Hinta Meijerink & Siri L. Feruglio & Karin M. Nygård & Gunnar Rø & Elisabeth H. Madslien & Birgitte Freiesleben de Blasio, 2022. "Increased household transmission and immune escape of the SARS-CoV-2 Omicron compared to Delta variants," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33233-9
    DOI: 10.1038/s41467-022-33233-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33233-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33233-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junya Sunagawa & Hyeongki Park & Kwang Su Kim & Ryo Komorizono & Sooyoun Choi & Lucia Ramirez Torres & Joohyeon Woo & Yong Dam Jeong & William S. Hart & Robin N. Thompson & Kazuyuki Aihara & Shingo Iw, 2023. "Isolation may select for earlier and higher peak viral load but shorter duration in SARS-CoV-2 evolution," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Denis Mongin & Nils Bürgisser & Gustavo Laurie & Guillaume Schimmel & Diem-Lan Vu & Stephane Cullati & Delphine Sophie Courvoisier, 2023. "Effect of SARS-CoV-2 prior infection and mRNA vaccination on contagiousness and susceptibility to infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33233-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.