IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33187-y.html
   My bibliography  Save this article

Insight into the transient inactivation effect on Au/TiO2 catalyst by in-situ DRIFT and UV–vis spectroscopy

Author

Listed:
  • Xianwei Wang

    (University of Geneva)

  • Arnulf Rosspeintner

    (University of Geneva)

  • Abolfazl Ziarati

    (University of Geneva)

  • Jiangtao Zhao

    (University of Geneva)

  • Thomas Bürgi

    (University of Geneva)

Abstract

Au catalysts have drawn broad attention for catalytic CO oxidation. However, a molecular-level understanding of the reaction mechanism on a fast time-resolved scale is still lacking. Herein, we apply in situ DRIFTS and UV-Vis spectroscopy to monitor the rapid dynamic changes during CO oxidation over Au/TiO2. A pronounced transient inactivation effect likely due to a structural change of Au/TiO2 induced by the reactants (CO and O2) is observed at the beginning of the reaction. The transient inactivation effect is affected by the ratio of CO and O2 concentrations. More importantly, during the unstable state, the electronic properties of the Au particles change, as indicated by the shift of the CO stretching vibration. UV-Vis spectroscopy corroborates the structure change of Au/TiO2 surface induced by the reactants, which leads to a weakening of the Au catalyst’s ability to be oxidized (less O2 adsorption), resulting in the transient inactivation effect.

Suggested Citation

  • Xianwei Wang & Arnulf Rosspeintner & Abolfazl Ziarati & Jiangtao Zhao & Thomas Bürgi, 2022. "Insight into the transient inactivation effect on Au/TiO2 catalyst by in-situ DRIFT and UV–vis spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33187-y
    DOI: 10.1038/s41467-022-33187-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33187-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33187-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunlai Zhang & Junying Zhang & Bingsen Zhang & Rui Si & Bing Han & Feng Hong & Yiming Niu & Li Sun & Lin Li & Botao Qiao & Keju Sun & Jiahui Huang & Masatake Haruta, 2020. "Boosting the catalysis of gold by O2 activation at Au-SiO2 interface," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Zhang & Dezhi Zhu & Jianfeng Yan & Chang-An Wang, 2021. "Strong metal-support interactions induced by an ultrafast laser," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Claudio Zeni & Kevin Rossi & Theodore Pavloudis & Joseph Kioseoglou & Stefano de Gironcoli & Richard E. Palmer & Francesca Baletto, 2021. "Data-driven simulation and characterisation of gold nanoparticle melting," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33187-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.