IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33179-y.html
   My bibliography  Save this article

Many-body localization enables iterative quantum optimization

Author

Listed:
  • Hanteng Wang

    (University of Minnesota
    Shanghai Jiao Tong University)

  • Hsiu-Chung Yeh

    (University of Minnesota)

  • Alex Kamenev

    (University of Minnesota
    University of Minnesota)

Abstract

Many discrete optimization problems are exponentially hard due to the underlying glassy landscape. This means that the optimization cost exhibits multiple local minima separated by an extensive number of switched discrete variables. Quantum computation was coined to overcome this predicament, but so far had only a limited progress. Here we suggest a quantum approximate optimization algorithm which is based on a repetitive cycling around the tricritical point of the many-body localization (MBL) transition. Each cycle includes quantum melting of the glassy state through a first order transition with a subsequent reentrance through the second order MBL transition. Keeping the reentrance path sufficiently close to the tricritical point separating the first and second order transitions, allows one to systematically improve optimization outcomes. The running time of this algorithm scales algebraically with the system size and the required precision. The corresponding exponents are related to critical indexes of the continuous MBL transition.

Suggested Citation

  • Hanteng Wang & Hsiu-Chung Yeh & Alex Kamenev, 2022. "Many-body localization enables iterative quantum optimization," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33179-y
    DOI: 10.1038/s41467-022-33179-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33179-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33179-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33179-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.