Structure and dynamics of Toll immunoreceptor activation in the mosquito Aedes aegypti
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-32690-6
Download full text from publisher
References listed on IDEAS
- Nikolaj Kulahin Roed & Cristina M. Viola & Ole Kristensen & Gerd Schluckebier & Mathias Norrman & Waseem Sajid & John D. Wade & Asser Sloth Andersen & Claus Kristensen & Timothy R. Ganderton & Johan P, 2018. "Structures of insect Imp-L2 suggest an alternative strategy for regulating the bioavailability of insulin-like hormones," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
- Jules A. Hoffmann, 2003. "The immune response of Drosophila," Nature, Nature, vol. 426(6962), pages 33-38, November.
- Sarah E. Ewald & Bettina L. Lee & Laura Lau & Katherine E. Wickliffe & Guo-Ping Shi & Harold A. Chapman & Gregory M. Barton, 2008. "The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor," Nature, Nature, vol. 456(7222), pages 658-662, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hai Ni & Yinuo Wang & Kai Yao & Ling Wang & Jiancheng Huang & Yongfang Xiao & Hongyao Chen & Bo Liu & Cliff Y. Yang & Jijun Zhao, 2024. "Cyclical palmitoylation regulates TLR9 signalling and systemic autoimmunity in mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Diana Boraschi & Dongjie Li & Yang Li & Paola Italiani, 2021. "In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials," IJERPH, MDPI, vol. 18(22), pages 1-16, November.
- Cristina M. Viola & Orsolya Frittmann & Huw T. Jenkins & Talha Shafi & Pierre Meyts & Andrzej M. Brzozowski, 2023. "Structural conservation of insulin/IGF signalling axis at the insulin receptors level in Drosophila and humans," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Srujan Kumar Dondapati & Georg Pietruschka & Lena Thoring & Doreen A Wüstenhagen & Stefan Kubick, 2019. "Cell-free synthesis of human toll-like receptor 9 (TLR9): Optimization of synthesis conditions and functional analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32690-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.