IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32394-x.html
   My bibliography  Save this article

Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi

Author

Listed:
  • Tae Hyung Won

    (Cornell University)

  • Jin Woo Bok

    (University of Wisconsin-Madison)

  • Nischala Nadig

    (University of Wisconsin-Madison)

  • Nandhitha Venkatesh

    (University of Wisconsin-Madison)

  • Grant Nickles

    (University of Wisconsin-Madison)

  • Claudio Greco

    (University of Wisconsin-Madison
    John Innes Centre)

  • Fang Yun Lim

    (University of Wisconsin-Madison
    University of Washington)

  • Jennifer B. González

    (Cornell University
    104 Peckham Hall, Nazareth College)

  • B. Gillian Turgeon

    (Cornell University)

  • Nancy P. Keller

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Frank C. Schroeder

    (Cornell University)

Abstract

The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.

Suggested Citation

  • Tae Hyung Won & Jin Woo Bok & Nischala Nadig & Nandhitha Venkatesh & Grant Nickles & Claudio Greco & Fang Yun Lim & Jennifer B. González & B. Gillian Turgeon & Nancy P. Keller & Frank C. Schroeder, 2022. "Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32394-x
    DOI: 10.1038/s41467-022-32394-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32394-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32394-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maximilian J. Helf & Bennett W. Fox & Alexander B. Artyukhin & Ying K. Zhang & Frank C. Schroeder, 2022. "Comparative metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bennett W. Fox & Maximilian J. Helf & Russell N. Burkhardt & Alexander B. Artyukhin & Brian J. Curtis & Diana Fajardo Palomino & Allen F. Schroeder & Amaresh Chaturbedi & Arnaud Tauffenberger & Cheste, 2024. "Evolutionarily related host and microbial pathways regulate fat desaturation in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Russell N. Burkhardt & Alexander B. Artyukhin & Erin Z. Aprison & Brian J. Curtis & Bennett W. Fox & Andreas H. Ludewig & Diana Fajardo Palomino & Jintao Luo & Amaresh Chaturbedi & Oishika Panda & Che, 2023. "Sex-specificity of the C. elegans metabolome," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32394-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.