IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32362-5.html
   My bibliography  Save this article

Topological superfluid defects with discrete point group symmetries

Author

Listed:
  • Y. Xiao

    (Amherst College
    University of Michigan)

  • M. O. Borgh

    (University of East Anglia)

  • A. Blinova

    (Amherst College
    University of Massachusetts Amherst)

  • T. Ollikainen

    (Amherst College
    Aalto University
    Universität Innsbruck)

  • J. Ruostekoski

    (Lancaster University)

  • D. S. Hall

    (Amherst College)

Abstract

Discrete symmetries are spatially ubiquitous but are often hidden in internal states of systems where they can have especially profound consequences. In this work we create and verify exotic magnetic phases of atomic spinor Bose–Einstein condensates that, despite their continuous character and intrinsic spatial isotropy, exhibit complex discrete polytope symmetries in their topological defects. Using carefully tailored spinor rotations and microwave transitions, we engineer singular line defects whose quantization conditions, exchange statistics, and dynamics are fundamentally determined by these underlying symmetries. We show how filling the vortex line singularities with atoms in a variety of different phases leads to core structures that possess magnetic interfaces with rich combinations of discrete and continuous symmetries. Such defects, with their non-commutative properties, could provide unconventional realizations of quantum information and interferometry.

Suggested Citation

  • Y. Xiao & M. O. Borgh & A. Blinova & T. Ollikainen & J. Ruostekoski & D. S. Hall, 2022. "Topological superfluid defects with discrete point group symmetries," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32362-5
    DOI: 10.1038/s41467-022-32362-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32362-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32362-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. S. Weiss & M. O. Borgh & A. Blinova & T. Ollikainen & M. Möttönen & J. Ruostekoski & D. S. Hall, 2019. "Controlled creation of a singular spinor vortex by circumventing the Dirac belt trick," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. L. E. Sadler & J. M. Higbie & S. R. Leslie & M. Vengalattore & D. M. Stamper-Kurn, 2006. "Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate," Nature, Nature, vol. 443(7109), pages 312-315, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Moroney & L. Del Bino & S. Zhang & M. T. M. Woodley & L. Hill & T. Wildi & V. J. Wittwer & T. Südmeyer & G.-L. Oppo & M. R. Vanner & V. Brasch & T. Herr & P. Del’Haye, 2022. "A Kerr polarization controller," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Ferenc Iglói & Csaba Zoltán Király, 2024. "Entanglement detection in postquench nonequilibrium states: thermal Gibbs vs. generalized Gibbs ensemble," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-12, June.
    3. Jiabin Yu & Rui-Xing Zhang & Zhi-Da Song, 2021. "Dynamical symmetry indicators for Floquet crystals," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32362-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.