IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32240-0.html
   My bibliography  Save this article

Space-time wave packets localized in all dimensions

Author

Listed:
  • Murat Yessenov

    (University of Central Florida)

  • Justin Free

    (Clemson University)

  • Zhaozhong Chen

    (University of Glasgow)

  • Eric G. Johnson

    (Clemson University)

  • Martin P. J. Lavery

    (University of Glasgow)

  • Miguel A. Alonso

    (CNRS, Centrale Marseille, Institut Fresnel, Aix Marseille Univ.
    The Institute of Optics, University of Rochester)

  • Ayman F. Abouraddy

    (University of Central Florida)

Abstract

Optical wave packets that are localized in space and time, but nevertheless overcome diffraction and travel rigidly in free space, are a long sought-after field structure with applications ranging from microscopy and remote sensing, to nonlinear and quantum optics. However, synthesizing such wave packets requires introducing non-differentiable angular dispersion with high spectral precision in two transverse dimensions, a capability that has eluded optics to date. Here, we describe an experimental strategy capable of sculpting the spatio-temporal spectrum of a generic pulsed beam by introducing arbitrary radial chirp via two-dimensional conformal coordinate transformations of the spectrally resolved field. This procedure yields propagation-invariant ‘space-time’ wave packets localized in all dimensions, with tunable group velocity in the range from 0.7c to 1.8c in free space, and endowed with prescribed orbital angular momentum. By providing unprecedented flexibility in sculpting the three-dimensional structure of pulsed optical fields, our experimental strategy promises to be a versatile platform for the emerging enterprise of space-time optics.

Suggested Citation

  • Murat Yessenov & Justin Free & Zhaozhong Chen & Eric G. Johnson & Martin P. J. Lavery & Miguel A. Alonso & Ayman F. Abouraddy, 2022. "Space-time wave packets localized in all dimensions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32240-0
    DOI: 10.1038/s41467-022-32240-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32240-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32240-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Murat Yessenov & Basanta Bhaduri & Peter J. Delfyett & Ayman F. Abouraddy, 2020. "Free-space optical delay line using space-time wave packets," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinggang Lin & Fu Feng & Yi Cai & Xiaowei Lu & Xuanke Zeng & Congying Wang & Shixiang Xu & Jingzhen Li & Xiaocong Yuan, 2024. "Direct space–time manipulation mechanism for spatio-temporal coupling of ultrafast light field," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32240-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.