IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32186-3.html
   My bibliography  Save this article

Addressing fairness in artificial intelligence for medical imaging

Author

Listed:
  • María Agustina Ricci Lara

    (Hospital Italiano de Buenos Aires
    Universidad Tecnológica Nacional)

  • Rodrigo Echeveste

    (Systems and Computational Intelligence sinc(i) (FICH-UNL/CONICET))

  • Enzo Ferrante

    (Systems and Computational Intelligence sinc(i) (FICH-UNL/CONICET))

Abstract

A plethora of work has shown that AI systems can systematically and unfairly be biased against certain populations in multiple scenarios. The field of medical imaging, where AI systems are beginning to be increasingly adopted, is no exception. Here we discuss the meaning of fairness in this area and comment on the potential sources of biases, as well as the strategies available to mitigate them. Finally, we analyze the current state of the field, identifying strengths and highlighting areas of vacancy, challenges and opportunities that lie ahead.

Suggested Citation

  • María Agustina Ricci Lara & Rodrigo Echeveste & Enzo Ferrante, 2022. "Addressing fairness in artificial intelligence for medical imaging," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32186-3
    DOI: 10.1038/s41467-022-32186-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32186-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32186-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frederick M. Howard & James Dolezal & Sara Kochanny & Jefree Schulte & Heather Chen & Lara Heij & Dezheng Huo & Rita Nanda & Olufunmilayo I. Olopade & Jakob N. Kather & Nicole Cipriani & Robert L. Gro, 2021. "The impact of site-specific digital histology signatures on deep learning model accuracy and bias," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilio Ferrara, 2024. "GenAI against humanity: nefarious applications of generative artificial intelligence and large language models," Journal of Computational Social Science, Springer, vol. 7(1), pages 549-569, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar S. M. El Nahhas & Chiara M. L. Loeffler & Zunamys I. Carrero & Marko Treeck & Fiona R. Kolbinger & Katherine J. Hewitt & Hannah S. Muti & Mara Graziani & Qinghe Zeng & Julien Calderaro & Nadina O, 2024. "Regression-based Deep-Learning predicts molecular biomarkers from pathology slides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Adalberto Claudio Quiros & Nicolas Coudray & Anna Yeaton & Xinyu Yang & Bojing Liu & Hortense Le & Luis Chiriboga & Afreen Karimkhan & Navneet Narula & David A. Moore & Christopher Y. Park & Harvey Pa, 2024. "Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32186-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.