IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31681-x.html
   My bibliography  Save this article

Enhancing fibre-optic distributed acoustic sensing capabilities with blind near-field array signal processing

Author

Listed:
  • Felipe Muñoz

    (Universidad Técnica Federico Santa María)

  • Marcelo A. Soto

    (Universidad Técnica Federico Santa María)

Abstract

Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.

Suggested Citation

  • Felipe Muñoz & Marcelo A. Soto, 2022. "Enhancing fibre-optic distributed acoustic sensing capabilities with blind near-field array signal processing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31681-x
    DOI: 10.1038/s41467-022-31681-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31681-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31681-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31681-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.