IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31607-7.html
   My bibliography  Save this article

Waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform

Author

Listed:
  • Jordan Goldstein

    (Massachusetts Institute of Technology)

  • Hongtao Lin

    (Massachusetts Institute of Technology
    State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University)

  • Skylar Deckoff-Jones

    (Massachusetts Institute of Technology)

  • Marek Hempel

    (Massachusetts Institute of Technology)

  • Ang-Yu Lu

    (Massachusetts Institute of Technology)

  • Kathleen A. Richardson

    (University of Central Florida)

  • Tomás Palacios

    (Massachusetts Institute of Technology)

  • Jing Kong

    (Massachusetts Institute of Technology)

  • Juejun Hu

    (Massachusetts Institute of Technology)

  • Dirk Englund

    (Massachusetts Institute of Technology)

Abstract

The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2 substrates limit operation to wavelengths λ ≲ 4 μm. Here we overcome these challenges with a chalcogenide glass-on-CaF2 PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation to λ = 5.2 μm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up to f = 1 MHz, and a predicted 3-dB bandwidth of f3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications.

Suggested Citation

  • Jordan Goldstein & Hongtao Lin & Skylar Deckoff-Jones & Marek Hempel & Ang-Yu Lu & Kathleen A. Richardson & Tomás Palacios & Jing Kong & Juejun Hu & Dirk Englund, 2022. "Waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31607-7
    DOI: 10.1038/s41467-022-31607-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31607-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31607-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Stefan M. Koepfli & Michael Baumann & Robin Gadola & Shadi Nashashibi & Yesim Koyaz & Daniel Rieben & Arif Can Güngör & Michael Doderer & Killian Keller & Yuriy Fedoryshyn & Juerg Leuthold, 2024. "Controlling photothermoelectric directional photocurrents in graphene with over 400 GHz bandwidth," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31607-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.