IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31433-x.html
   My bibliography  Save this article

Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids

Author

Listed:
  • Payal Chirania

    (Oak Ridge National Laboratory
    University of Tennessee
    Oak Ridge National Laboratory)

  • Evert K. Holwerda

    (Oak Ridge National Laboratory
    Dartmouth College – Thayer School of Engineering)

  • Richard J. Giannone

    (Oak Ridge National Laboratory
    Oak Ridge National Laboratory)

  • Xiaoyu Liang

    (Dartmouth College – Thayer School of Engineering)

  • Suresh Poudel

    (Oak Ridge National Laboratory)

  • Joseph C. Ellis

    (Oak Ridge National Laboratory
    Oak Ridge National Laboratory)

  • Yannick J. Bomble

    (Oak Ridge National Laboratory
    National Renewable Energy Laboratory)

  • Robert L. Hettich

    (Oak Ridge National Laboratory
    Oak Ridge National Laboratory)

  • Lee R. Lynd

    (Oak Ridge National Laboratory
    Dartmouth College – Thayer School of Engineering)

Abstract

Economically viable production of cellulosic biofuels requires operation at high solids loadings—on the order of 15 wt%. To this end we characterize Nature’s ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are β-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes—all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.

Suggested Citation

  • Payal Chirania & Evert K. Holwerda & Richard J. Giannone & Xiaoyu Liang & Suresh Poudel & Joseph C. Ellis & Yannick J. Bomble & Robert L. Hettich & Lee R. Lynd, 2022. "Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31433-x
    DOI: 10.1038/s41467-022-31433-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31433-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31433-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Xiang & Li, Mi & Pu, Yunqiao & Ragauskas, Arthur J. & Klett, Adam S. & Thies, Mark & Zheng, Yi, 2018. "Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight," Renewable Energy, Elsevier, vol. 123(C), pages 664-674.
    2. Bridget B. McGivern & Malak M. Tfaily & Mikayla A. Borton & Suzanne M. Kosina & Rebecca A. Daly & Carrie D. Nicora & Samuel O. Purvine & Allison R. Wong & Mary S. Lipton & David W. Hoyt & Trent R. Nor, 2021. "Decrypting bacterial polyphenol metabolism in an anoxic wetland soil," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Wenyao & Chu, Qiulu & Li, Jin & Xie, Xinyu & Wang, Jing & Jin, Yongcan & Wu, Shufang & Hu, Jinguang & Song, Kai, 2022. "Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass," Renewable Energy, Elsevier, vol. 187(C), pages 123-134.
    2. Yao, Fengpei & Shen, Fei & Wan, Xue & Hu, Changwei, 2020. "High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Chu, Qiulu & Tong, Wenyao & Wu, Shufang & Jin, Yongcan & Hu, Jinguang & Song, Kai, 2021. "Modification of lignin by various additives to mitigate lignin inhibition for improved enzymatic digestibility of dilute acid pretreated hardwood," Renewable Energy, Elsevier, vol. 177(C), pages 992-1000.
    4. Nicholas O. E. Ofiti & Michael W. I. Schmidt & Samuel Abiven & Paul J. Hanson & Colleen M. Iversen & Rachel M. Wilson & Joel E. Kostka & Guido L. B. Wiesenberg & Avni Malhotra, 2023. "Climate warming and elevated CO2 alter peatland soil carbon sources and stability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Rosen, Yan & Mamane, Hadas & Gerchman, Yoram, 2021. "Immersed ozonation of agro-wastes as an effective pretreatment method in bioethanol production," Renewable Energy, Elsevier, vol. 174(C), pages 382-390.
    7. Jang, Soo-Kyeong & Choi, June-Ho & Kim, Jong-Hwa & Kim, Hoyong & Jeong, Hanseob & Choi, In-Gyu, 2020. "Statistical analysis of glucose production from Eucalyptus pellita with individual control of chemical constituents," Renewable Energy, Elsevier, vol. 148(C), pages 298-308.
    8. Wang, Kai & Yang, Chundong & Xu, Xin & Lai, Chenhuan & Zhang, Daihui & Yong, Qiang, 2022. "2-Naphthol modification alleviated the inhibition of ethanol organosolv lignin on enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 200(C), pages 767-776.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31433-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.