IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31348-7.html
   My bibliography  Save this article

Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland

Author

Listed:
  • I. N. Bindeman

    (University of Oregon)

  • F. M. Deegan

    (Uppsala University
    Uppsala University)

  • V. R. Troll

    (Uppsala University
    Uppsala University)

  • T. Thordarson

    (University of Iceland)

  • Á. Höskuldsson

    (University of Iceland)

  • W. M. Moreland

    (University of Iceland)

  • E. U. Zorn

    (GFZ German Research Centre for Geosciences)

  • A. V. Shevchenko

    (GFZ German Research Centre for Geosciences)

  • T. R. Walter

    (GFZ German Research Centre for Geosciences)

Abstract

The basalts of the 2021 Fagradalsfjall eruption were the first erupted on the Reykjanes Peninsula in 781 years and offer a unique opportunity to determine the composition of the mantle underlying Iceland, in particular its oxygen isotope composition (δ18O values). The basalts show compositional variations in Zr/Y, Nb/Zr and Nb/Y values that span roughly half of the previously described range for Icelandic basaltic magmas and signal involvement of Icelandic plume (OIB) and Enriched Mid-Ocean Ridge Basalt (EMORB) in magma genesis. Here we show that Fagradalsfjall δ18O values are invariable (mean δ18O = 5.4 ± 0.3‰ 2 SD, N = 47) and indistinguishable from “normal” upper mantle, in contrast to significantly lower δ18O values reported for erupted materials elsewhere in Iceland (e.g., the 2014–2015 eruption at Holuhraun, Central Iceland). Thus, despite differing trace element characteristics, the melts that supplied the Fagradalsfjall eruption show no evidence for 18O-depleted mantle or interaction with low-δ18O crust and may therefore represent a useful mantle reference value in this part of the Icelandic plume system.

Suggested Citation

  • I. N. Bindeman & F. M. Deegan & V. R. Troll & T. Thordarson & Á. Höskuldsson & W. M. Moreland & E. U. Zorn & A. V. Shevchenko & T. R. Walter, 2022. "Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31348-7
    DOI: 10.1038/s41467-022-31348-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31348-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31348-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. I. N. Bindeman & D. O. Zakharov & J. Palandri & N. D. Greber & N. Dauphas & G. J. Retallack & A. Hofmann & J. S. Lackey & A. Bekker, 2018. "Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago," Nature, Nature, vol. 557(7706), pages 545-548, May.
    2. Cecily J. Wolfe & Ingi Th. Bjarnason & John C. VanDecar & Sean C. Solomon, 1997. "Seismic structure of the Iceland mantle plume," Nature, Nature, vol. 385(6613), pages 245-247, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Bo Huang & Tim E. Johnson & Simon A. Wilde & Ali Polat & Dong Fu & Timothy Kusky, 2022. "Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Ilya N. Bindeman & Dmitri A. Ionov & Peter M. E. Tollan & Alexander V. Golovin, 2022. "Oxygen isotope (δ18O, Δ′17O) insights into continental mantle evolution since the Archean," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Cinzia Bellezza & Erika Barison & Biancamaria Farina & Flavio Poletto & Fabio Meneghini & Gualtiero Böhm & Deyan Draganov & Martijn T. G. Janssen & Gijs van Otten & Anna L. Stork & Athena Chalari & An, 2024. "Multi-Sensor Seismic Processing Approach Using Geophones and HWC DAS in the Monitoring of CO 2 Storage at the Hellisheiði Geothermal Field in Iceland," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    5. Jin Liu & Richard M. Palin & Ross N. Mitchell & Zhenghong Liu & Jian Zhang & Zhongshui Li & Changquan Cheng & Hongxiang Zhang, 2024. "Archaean multi-stage magmatic underplating drove formation of continental nuclei in the North China Craton," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Bo Huang & Man Liu & Timothy M. Kusky & Tim E. Johnson & Simon A. Wilde & Dong Fu & Hao Deng & Qunye Qian, 2023. "Changes in orogenic style and surface environment recorded in Paleoproterozoic foreland successions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31348-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.