IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31232-4.html
   My bibliography  Save this article

Complete biosynthetic pathway to the antidiabetic drug acarbose

Author

Listed:
  • Takeshi Tsunoda

    (Oregon State University)

  • Arash Samadi

    (Oregon State University)

  • Sachin Burade

    (Oregon State University)

  • Taifo Mahmud

    (Oregon State University)

Abstract

Acarbose is a bacterial-derived α-glucosidase inhibitor clinically used to treat patients with type 2 diabetes. As type 2 diabetes is on the rise worldwide, the market demand for acarbose has also increased. Despite its significant therapeutic importance, how it is made in nature is not completely understood. Here, we report the complete biosynthetic pathway to acarbose and its structural components, GDP-valienol and O-4-amino-(4,6-dideoxy-α-D-glucopyranosyl)-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose. GDP-valienol is derived from valienol 7-phosphate, catalyzed by three cyclitol modifying enzymes, whereas O-4-amino-(4,6-dideoxy-α-D-glucopyranosyl)-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose is produced from dTDP-4-amino-4,6-dideoxy-D-glucose and maltose by the glycosyltransferase AcbI. The final assembly process is catalyzed by a pseudoglycosyltransferase enzyme, AcbS, which is a homologue of AcbI but catalyzes the formation of a non-glycosidic C-N bond. This study clarifies all previously unknown steps in acarbose biosynthesis and establishes a complete pathway to this high value pharmaceutical.

Suggested Citation

  • Takeshi Tsunoda & Arash Samadi & Sachin Burade & Taifo Mahmud, 2022. "Complete biosynthetic pathway to the antidiabetic drug acarbose," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31232-4
    DOI: 10.1038/s41467-022-31232-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31232-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31232-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hundeep Kaur & Andrea Lakatos-Karoly & Ramona Vogel & Anne Nöll & Robert Tampé & Clemens Glaubitz, 2016. "Coupled ATPase-adenylate kinase activity in ABC transporters," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    2. Qinqin Zhao & Yuchang Luo & Xin Zhang & Qianjin Kang & Dan Zhang & Lili Zhang & Linquan Bai & Zixin Deng, 2020. "A severe leakage of intermediates to shunt products in acarbose biosynthesis," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jixing Lyu & Chang Liu & Tianqi Zhang & Samantha Schrecke & Nicklaus P. Elam & Charles Packianathan & Georg K. A. Hochberg & David Russell & Minglei Zhao & Arthur Laganowsky, 2022. "Structural basis for lipid and copper regulation of the ABC transporter MsbA," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31232-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.