IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31177-8.html
   My bibliography  Save this article

RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance

Author

Listed:
  • Daniel G. Mediati

    (University of New South Wales)

  • Julia L. Wong

    (University of New South Wales)

  • Wei Gao

    (Peter Doherty Institute, University of Melbourne)

  • Stuart McKellar

    (University of Edinburgh)

  • Chi Nam Ignatius Pang

    (University of New South Wales)

  • Sylvania Wu

    (University of New South Wales)

  • Winton Wu

    (University of New South Wales)

  • Brandon Sy

    (University of New South Wales)

  • Ian R. Monk

    (Peter Doherty Institute, University of Melbourne)

  • Joanna M. Biazik

    (University of New South Wales)

  • Marc R. Wilkins

    (University of New South Wales)

  • Benjamin P. Howden

    (Peter Doherty Institute, University of Melbourne)

  • Timothy P. Stinear

    (Peter Doherty Institute, University of Melbourne)

  • Sander Granneman

    (University of Edinburgh)

  • Jai J. Tree

    (University of New South Wales)

Abstract

Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed vigR 3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the vigR 3′UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA–mRNA base-pairing. Deletion of the vigR 3′UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.

Suggested Citation

  • Daniel G. Mediati & Julia L. Wong & Wei Gao & Stuart McKellar & Chi Nam Ignatius Pang & Sylvania Wu & Winton Wu & Brandon Sy & Ian R. Monk & Joanna M. Biazik & Marc R. Wilkins & Benjamin P. Howden & T, 2022. "RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31177-8
    DOI: 10.1038/s41467-022-31177-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31177-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31177-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cynthia M. Sharma & Steve Hoffmann & Fabien Darfeuille & Jérémy Reignier & Sven Findeiß & Alexandra Sittka & Sandrine Chabas & Kristin Reiche & Jörg Hackermüller & Richard Reinhardt & Peter F. Stadler, 2010. "The primary transcriptome of the major human pathogen Helicobacter pylori," Nature, Nature, vol. 464(7286), pages 250-255, March.
    2. Rob van Nues & Gabriele Schweikert & Erica de Leau & Alina Selega & Andrew Langford & Ryan Franklin & Ira Iosub & Peter Wadsworth & Guido Sanguinetti & Sander Granneman, 2017. "Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress," Nature Communications, Nature, vol. 8(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ross A. Cordiner & Yuhui Dou & Rune Thomsen & Andrii Bugai & Sander Granneman & Torben Heick Jensen, 2023. "Temporal-iCLIP captures co-transcriptional RNA-protein interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Amir Bar & Liron Argaman & Michal Eldar & Hanah Margalit, 2023. "TRS: a method for determining transcript termini from RNAtag-seq sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Emily Petroni & Caroline Esnault & Daniel Tetreault & Ryan K. Dale & Gisela Storz & Philip P. Adams, 2023. "Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen Borrelia burgdorferi," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    4. Liang-Cui Chu & Pedro Arede & Wei Li & Erika C. Urdaneta & Ivayla Ivanova & Stuart W. McKellar & Jimi C. Wills & Theresa Fröhlich & Alexander Kriegsheim & Benedikt M. Beckmann & Sander Granneman, 2022. "The RNA-bound proteome of MRSA reveals post-transcriptional roles for helix-turn-helix DNA-binding and Rossmann-fold proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Mateusz Noszka & Agnieszka Strzałka & Jakub Muraszko & Rafał Kolenda & Chen Meng & Christina Ludwig & Kerstin Stingl & Anna Zawilak-Pawlik, 2023. "Profiling of the Helicobacter pylori redox switch HP1021 regulon using a multi-omics approach," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Alejandro Tejada-Arranz & Aleksei Lulla & Maxime Bouilloux-Lafont & Evelyne Turlin & Xue-Yuan Pei & Thibaut Douché & Mariette Matondo & Allison H. Williams & Bertrand Raynal & Ben F. Luisi & Hilde Reu, 2023. "Acetylation regulates the oligomerization state and activity of RNase J, the Helicobacter pylori major ribonuclease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31177-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.