IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30995-0.html
   My bibliography  Save this article

Light-sheet photonic force optical coherence elastography for high-throughput quantitative 3D micromechanical imaging

Author

Listed:
  • Yuechuan Lin

    (Cornell University
    Massachusetts Institute of Technology)

  • Nichaluk Leartprapun

    (Cornell University
    Harvard Medical School)

  • Justin C. Luo

    (Cornell University)

  • Steven G. Adie

    (Cornell University)

Abstract

Quantitative characterisation of micro-scale mechanical properties of the extracellular matrix (ECM) and dynamic cell-ECM interactions can significantly enhance fundamental discoveries and their translational potential in the rapidly growing field of mechanobiology. However, quantitative 3D imaging of ECM mechanics with cellular-scale resolution and dynamic monitoring of cell-mediated changes to pericellular viscoelasticity remain a challenge for existing mechanical characterisation methods. Here, we present light-sheet photonic force optical coherence elastography (LS-pfOCE) to address this need by leveraging a light-sheet for parallelised, non-invasive, and localised mechanical loading. We demonstrate the capabilities of LS-pfOCE by imaging the micromechanical heterogeneity of fibrous collagen matrices and perform live-cell imaging of cell-mediated ECM micromechanical dynamics. By providing access to 4D spatiotemporal variations in the micromechanical properties of 3D biopolymer constructs and engineered cellular systems, LS-pfOCE has the potential to drive new discoveries in mechanobiology and contribute to the development of novel biomechanics-based clinical diagnostics and therapies.

Suggested Citation

  • Yuechuan Lin & Nichaluk Leartprapun & Justin C. Luo & Steven G. Adie, 2022. "Light-sheet photonic force optical coherence elastography for high-throughput quantitative 3D micromechanical imaging," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30995-0
    DOI: 10.1038/s41467-022-30995-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30995-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30995-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew D. Doyle & Nicole Carvajal & Albert Jin & Kazue Matsumoto & Kenneth M. Yamada, 2015. "Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions," Nature Communications, Nature, vol. 6(1), pages 1-15, December.
    2. Maxwell A Kotlarchyk & Samir G Shreim & Martha B Alvarez-Elizondo & Laura C Estrada & Rahul Singh & Lorenzo Valdevit & Ekaterina Kniazeva & Enrico Gratton & Andrew J Putnam & Elliot L Botvinick, 2011. "Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard J. Hewitt & Franz Puttur & David C. A. Gaboriau & Frédéric Fercoq & Maryline Fresquet & William J. Traves & Laura L. Yates & Simone A. Walker & Philip L. Molyneaux & Samuel V. Kemp & Andrew G., 2023. "Lung extracellular matrix modulates KRT5+ basal cell activity in pulmonary fibrosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Eva Crosas-Molist & Vittoria Graziani & Oscar Maiques & Pahini Pandya & Joanne Monger & Remi Samain & Samantha L. George & Saba Malik & Jerrine Salise & Valle Morales & Adrien Le Guennec & R. Andrew A, 2023. "AMPK is a mechano-metabolic sensor linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30995-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.