IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30923-2.html
   My bibliography  Save this article

Measuring and directing charge transfer in heterogenous catalysts

Author

Listed:
  • Michael J. Zachman

    (Oak Ridge National Laboratory)

  • Victor Fung

    (Oak Ridge National Laboratory
    University of California)

  • Felipe Polo-Garzon

    (Oak Ridge National Laboratory)

  • Shaohong Cao

    (Oak Ridge National Laboratory)

  • Jisue Moon

    (Oak Ridge National Laboratory)

  • Zhennan Huang

    (Oak Ridge National Laboratory)

  • De-en Jiang

    (University of California)

  • Zili Wu

    (Oak Ridge National Laboratory)

  • Miaofang Chi

    (Oak Ridge National Laboratory)

Abstract

Precise control of charge transfer between catalyst nanoparticles and supports presents a unique opportunity to enhance the stability, activity, and selectivity of heterogeneous catalysts. While charge transfer is tunable using the atomic structure and chemistry of the catalyst-support interface, direct experimental evidence is missing for three-dimensional catalyst nanoparticles, primarily due to the lack of a high-resolution method that can probe and correlate both the charge distribution and atomic structure of catalyst/support interfaces in these structures. We demonstrate a robust scanning transmission electron microscopy (STEM) method that simultaneously visualizes the atomic-scale structure and sub-nanometer-scale charge distribution in heterogeneous catalysts using a model Au-catalyst/SrTiO3-support system. Using this method, we further reveal the atomic-scale mechanisms responsible for the highly active perimeter sites and demonstrate that the charge transfer behavior can be readily controlled using post-synthesis treatments. This methodology provides a blueprint for better understanding the role of charge transfer in catalyst stability and performance and facilitates the future development of highly active advanced catalysts.

Suggested Citation

  • Michael J. Zachman & Victor Fung & Felipe Polo-Garzon & Shaohong Cao & Jisue Moon & Zhennan Huang & De-en Jiang & Zili Wu & Miaofang Chi, 2022. "Measuring and directing charge transfer in heterogenous catalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30923-2
    DOI: 10.1038/s41467-022-30923-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30923-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30923-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos Hernández Mejía & Tom W. Deelen & Krijn P. Jong, 2018. "Activity enhancement of cobalt catalysts by tuning metal-support interactions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xiyi Li & Chao Wang & Jianlong Yang & Youxun Xu & Yi Yang & Jiaguo Yu & Juan J. Delgado & Natalia Martsinovich & Xiao Sun & Xu-Sheng Zheng & Weixin Huang & Junwang Tang, 2023. "PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Yaoda Liu & Lei Li & Li Wang & Na Li & Xiaoxu Zhao & Ya Chen & Thangavel Sakthivel & Zhengfei Dai, 2024. "Janus electronic state of supported iridium nanoclusters for sustainable alkaline water electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zijun Huang & Dedong He & Weihua Deng & Guowu Jin & Ke Li & Yongming Luo, 2023. "Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Yijing Liu & Rankun Zhang & Le Lin & Yichao Wang & Changping Liu & Rentao Mu & Qiang Fu, 2023. "Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Pei Xiong & Zhihang Xu & Tai-Sing Wu & Tong Yang & Qiong Lei & Jiangtong Li & Guangchao Li & Ming Yang & Yun-Liang Soo & Robert David Bennett & Shu Ping Lau & Shik Chi Edman Tsang & Ye Zhu & Molly Men, 2024. "Synthesis of core@shell catalysts guided by Tammann temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Ming Xu & Xuetao Qin & Yao Xu & Xiaochen Zhang & Lirong Zheng & Jin-Xun Liu & Meng Wang & Xi Liu & Ding Ma, 2022. "Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30923-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.