IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30915-2.html
   My bibliography  Save this article

Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis

Author

Listed:
  • Zhiyong Sun

    (University of Southern Denmark)

  • René Hübner

    (Ion Beam Center, Helmholtz-Zentrum Dresden - Rossendorf)

  • Jian Li

    (ShanghaiTech University)

  • Changzhu Wu

    (University of Southern Denmark
    University of Southern Denmark)

Abstract

The natural bacterial spores have inspired the development of artificial spores, through coating cells with protective materials, for durable whole-cell catalysis. Despite attractiveness, artificial spores developed to date are generally limited to a few microorganisms with their natural endogenous enzymes, and they have never been explored as a generic platform for widespread synthesis. Here, we report a general approach to designing artificial spores based on Escherichia coli cells with recombinant enzymes. The artificial spores are simply prepared by coating cells with polydopamine, which can withstand UV radiation, heating and organic solvents. Additionally, the protective coating enables living cells to stabilize aqueous-organic emulsions for efficient interfacial biocatalysis ranging from single reactions to multienzyme cascades. Furthermore, the interfacial system can be easily expanded to chemoenzymatic synthesis by combining artificial spores with metal catalysts. Therefore, this artificial-spore-based platform technology is envisioned to lay the foundation for next-generation cell factory engineering.

Suggested Citation

  • Zhiyong Sun & René Hübner & Jian Li & Changzhu Wu, 2022. "Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30915-2
    DOI: 10.1038/s41467-022-30915-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30915-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30915-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zachary C. Litman & Yajie Wang & Huimin Zhao & John F. Hartwig, 2018. "Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis," Nature, Nature, vol. 560(7718), pages 355-359, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyun Wang & Shuquan Wu & Juan Zou & Xuyang Liang & Chengli Mou & Pengcheng Zheng & Yonggui Robin Chi, 2023. "NHC-catalyzed enantioselective access to β-cyano carboxylic esters via in situ substrate alternation and release," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yunting Liu & Teng Ma & Zhongxu Guo & Liya Zhou & Guanhua Liu & Ying He & Li Ma & Jing Gao & Jing Bai & Frank Hollmann & Yanjun Jiang, 2024. "Asymmetric α-benzylation of cyclic ketones enabled by concurrent chemical aldol condensation and biocatalytic reduction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Fan-Tao Meng & Ya-Nan Wang & Xiao-Yan Qin & Shi-Jun Li & Jing Li & Wen-Juan Hao & Shu-Jiang Tu & Yu Lan & Bo Jiang, 2022. "Azoarene activation for Schmidt-type reaction and mechanistic insights," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30915-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.