IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30796-5.html
   My bibliography  Save this article

Stability of high-temperature salty ice suggests electrolyte permeability in water-rich exoplanet icy mantles

Author

Listed:
  • Jean-Alexis Hernandez

    (European Synchrotron Radiation Facility
    Université de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR 5276
    University of Oslo)

  • Razvan Caracas

    (Université de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR 5276
    University of Oslo
    Université de Paris, Institut de Physique du Globe de Paris, CNRS)

  • Stéphane Labrosse

    (Université de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR 5276)

Abstract

Electrolytes play an important role in the internal structure and dynamics of water-rich satellites and potentially water-rich exoplanets. However, in planets, the presence of a large high-pressure ice mantle is thought to hinder the exchange and transport of electrolytes between various liquid and solid deep layers. Here we show, using first-principles simulations, that up to 2.5 wt% NaCl can be dissolved in dense water ice at interior conditions of water-rich super-Earths and mini-Neptunes. The salt impurities enhance the diffusion of H atoms, extending the stability field of recently discovered superionic ice, and push towards higher pressures the transition to the stiffer ice X phase. Scaling laws for thermo-compositional convection show that salts entering the high pressure ice layer can be readily transported across. These findings suggest that the high-pressure ice mantle of water-rich exoplanets is permeable to the convective transport of electrolytes between the inner rocky core and the outer liquid layer.

Suggested Citation

  • Jean-Alexis Hernandez & Razvan Caracas & Stéphane Labrosse, 2022. "Stability of high-temperature salty ice suggests electrolyte permeability in water-rich exoplanet icy mantles," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30796-5
    DOI: 10.1038/s41467-022-30796-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30796-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30796-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Magali Benoit & Dominik Marx & Michele Parrinello, 1998. "Tunnelling and zero-point motion in high-pressure ice," Nature, Nature, vol. 392(6673), pages 258-261, March.
    2. Marius Millot & Federica Coppari & J. Ryan Rygg & Antonio Correa Barrios & Sebastien Hamel & Damian C. Swift & Jon H. Eggert, 2019. "Nanosecond X-ray diffraction of shock-compressed superionic water ice," Nature, Nature, vol. 569(7755), pages 251-255, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baptiste Journaux, 2022. "Salty ice and the dilemma of ocean exoplanet habitability," Nature Communications, Nature, vol. 13(1), pages 1-4, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavan Ravindra & Xavier R. Advincula & Christoph Schran & Angelos Michaelides & Venkat Kapil, 2024. "Quasi-one-dimensional hydrogen bonding in nanoconfined ice," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Sigbjørn Løland Bore & Francesco Paesani, 2023. "Realistic phase diagram of water from “first principles” data-driven quantum simulations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shichuan Sun & Yu He & Junyi Yang & Yufeng Lin & Jinfeng Li & Duck Young Kim & Heping Li & Ho-kwang Mao, 2023. "Superionic effect and anisotropic texture in Earth’s inner core driven by geomagnetic field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Shuning Pan & Tianheng Huang & Allona Vazan & Zhixin Liang & Cong Liu & Junjie Wang & Chris J. Pickard & Hui-Tian Wang & Dingyu Xing & Jian Sun, 2023. "Magnesium oxide-water compounds at megabar pressure and implications on planetary interiors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Aleks Reinhardt & Mandy Bethkenhagen & Federica Coppari & Marius Millot & Sebastien Hamel & Bingqing Cheng, 2022. "Thermodynamics of high-pressure ice phases explored with atomistic simulations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Kazuki Komatsu & Takanori Hattori & Stefan Klotz & Shinichi Machida & Keishiro Yamashita & Hayate Ito & Hiroki Kobayashi & Tetsuo Irifune & Toru Shinmei & Asami Sano-Furukawa & Hiroyuki Kagi, 2024. "Hydrogen bond symmetrisation in D2O ice observed by neutron diffraction," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30796-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.